• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy storage solutions for electric bus fast charging stations : Cost optimization of grid connection and grid reinforcements

Andersson, Malin January 2017 (has links)
This study investigates the economic benefits of installing a lithium-ion battery storage (lithium iron phosphate, LFP and lithium titanate, LTO) at an electric bus fast charging station.  It is conducted on a potential electric bus system in the Swedish city Västerås, and based on the existing bus schedules and routes as well as the local distribution system. The size of the energy storage as well as the maximum power outtake from the grid is optimized in order to minimize the total annual cost of the connection. The assessment of the distribution system shows that implementing an electric bus system based on opportunity charging in Västerås does not cause over-capacity in the 10 kV grid during normal feeding mode. However, grid reinforcements might become necessary to guarantee potential backup feeding modes. Batteries are not a cost effective option to decrease grid owner investments in new transformers. However, battery energy storage have the possibility to decrease the annual cost of connecting a fast charging station to the low-voltage grid. The main advantage of the storage system is to decrease the fees to the grid owner. Of the studied batteries, LTO is the most cost effective solution because of its larger possible depth-of-discharge for a given cycle life. The most important characteristics, that determine if a fast charging station could benefit economically from an energy storage, is the bus frequency. The longer the time in between buses and the higher the power demand, the more advantageous is the energy storage.
2

Jämförelse mellan olika biodrivmedel för den kollektiva busstrafiken i Gävleborgs län : Miljö- och potentialbedömning av biodiesel, biogas och eldrift

Nordin, Elin, Thiede, Emma January 2016 (has links)
Fossila drivmedel ger en negativ påverkan på miljö och klimat. Men frågan är om biodrivmedel är bättre. Det kan skilja stort mellan olika drivmedel beroende på vilken råvara och framställningsprocess som används. Syftet med studien är att göra en sammanställning av fördelar och nackdelar med olika fossilfria drivmedel som används och kan komma att användas i kollektivtrafiken i Gävleborgs län. I samråd med X-trafik, den regionala kollektivtrafikmyndigheten, har det framkommit att det främst är biodiesel (HVO - hydrogenerade vegetabiliska oljor), biogas och el som är intressanta att analysera. Rapporten kommer att redogöra hur användningen ser ut i andra delar av landet och i världen för att kunna anpassa kunskaperna till Gävleborgs län. I studien ingår även en granskning av produktionspotentialen för dessa drivmedel i länet. Det slutgiltiga resultatet av studien kommer att bidra till utvecklingen av en fossilfri fordonsflotta i regionen. Genom intervjuer med närproducenter av biogas (Gästrike Ekogas AB) och biodiesel (Colabitoil AB) samt med X-trafik inhämtades kunskap om hur produktionen ser ut i länet och vilka behov som finns. Detta tillsammans med en litteraturstudie gav resultatet. X-trafik har huvudansvaret för kollektivtrafiken och utför den genom entreprenörer som fått uppdragen genom upphandling. HVO har många fördelar mot andra dieselbränslen och kan tankas direkt i fordonen utan att dessa behöver modifieras. Dessutom görs den HVO som Colabitoil distribuerar och kommer börja producera på restavfall. En av X-trafiks entreprenörer har slutit ett avtal med Colabitoil vilket betyder att all fossil diesel som bussarna kör på idag kommer att bytas ut mot biodiesel. I Gävle stad kör bussarna på biogas och gasen produceras på avloppsreningsverket Duvbacken. Denna produktion täcker upp 60 % av behovet och resten är fossil gas. Med den nya anläggningen som Gästrike Ekogas håller på att bygga kommer behovet mer än väl täckas upp. Biogasen är även den gjord på restavfall. I den nya biogasanläggningen kommer de också få en utmärkt biogödsel fri från föroreningar, som kan KRAV-märkas och användas till odling för att ersätta konstgödsel. Elbussar är något som diskuteras av X-trafik och kan vara bra alternativ på vissa linjer dock är tekniken under utveckling fortfarande och investeringskostnaden är hög. Det finns potential att kollektivtrafiken i Gävleborgs län kan köra på 100 % miljövänligt, hållbara och närproducerade drivmedel inom en snar framtid. / The purpose of this study is to make a summary of the advantages and disadvantages of various non-fossil fuels that are used and can be used in public transport in the county. In consultation with X-trafik, it has emerged that it is mainly biodiesel (in the form of  HVO - hydrogenated vegetable oils), biogas and electricity that are interesting to analyse. The report will describe the use in other parts of the country and the world to adapt the knowledge to the county. The study also includes an investigation of the production potential of these fuels within the county. The final results of the study will contribute to the development of a fossil free fleet in the region. Through interviews with local producers of biogas (Gästrike Ekogas AB) and biodiesel (Colabitoil AB) and X-trafik information was collected about how the production is performed in the county and what the needs are. This, together with a literature review yielded the results. X-trafik has the main responsibility for the public transport and carries it out through contractors with assignments through procurement. HVO has many advantages compared to other diesel fuels and can be refueled directly in vehicles without modifications of these. Additionally, the HVO that Colabitoil distributes and will begin producing is made of residual waste. One of X-Trafik's contractors has signed a contract with Colabitoil which means that all fossil diesel the buses run on today will be replaced with biodiesel. In Gävle city the buses run on biogas and the gas is produced at the sewage treatment plant. This production covers 60% of the need and the rest is fossil gas. The new facility, which Gästrike Ekogas is building, will produce more than the public transport needs. Biogas is also made from residual waste. The new facility will also yield a by-product in the form of an excellent bio-fertilizer free of contaminants that can be KRAV labelled and used for cultivation to replace chemical fertilizers. Electric buses are something that is discussed, and may be a good option on certain routes, however, the technology is still under development and the investment cost is high. There is great potential that the public transport in the county can run on 100% eco-friendly, sustainable and locally produced fuels in the near future.
3

Diffusion of Electric Busses for Public Transportation : A Case Study in Three Indian Municipalities

Venkatanarasimhan, Aravind, Cherukuri, Saivenkat January 2018 (has links)
INTRODUCTION: In India, internal combustion (IC) engines are the main concern, due to the exhaustion of natural fossil fuelled buses. These are the three major factors which is considered as an urgency to find an alternate solution. First, the energy and emission trends from transports. Second, efficient urban infrastructures, such as mass transit system. Third, the policies to adopt the cleaner and efficient technologies such as electric vehicles and other available alternate fuels. This made the Indian government to think about adopting electric vehicles as a mode of public transportation. PURPOSE: By initiating the use of electric buses this thesis will assist the three state transport corporations in India who are willing to initiate use of electric bus by overcoming their barriers. Furthermore, this research will be an implication for automotive industries in India towards their diffusion of electric buses. FRAMEWORK: Electric buses usage has been a major part of this diffusion process where it helped the authors to analyse how important it is. Adding to this the different perceived attributes of innovation from Rogers model has been analysed in this research to find out the different factors affecting towards the diffusion of electric buses. METHODOLOGY: This study uses the case study method to study the diffusion of electric buses in three municipalities. Primary data has been gathered through semi-structured interviews with representatives from the municipalities and suppliers. In Addition, secondary data, such as press releases from the municipalities and suppliers, has been collected CONCLUSION: It is been concluded that the adoption of electric buses is one of the major solution which will help the country carbon emission rate to go low with the technicalities involved in the electric buses. In addition to that if the private and municipality transports plan to expand their fleet of electric buses, complexity and nature of social system are the one of the major attributes which should be considered initially during the diffusion of electric buses. LIMITATIONS: This research has a limit in the role of internal organisation (Government or Companies) of the municipalities, supplier’s business model, policy related issues between the municipality and the government has not been analysed. All these limitations in turn is a future research for the further researchers.
4

Fossilfri kollektivtrafik : Drivmedelsstrategi för införande av elbussar i Uppsala stadstrafik / Fossil free public transport : Fuel strategy for introduction of electric buses in Uppsala city traffic

Sahlström, Charlotta, Karin, Salander January 2018 (has links)
The Swedish government announced in 2015 that Sweden will work towards becoming "one of the first fossil-free welfare states of the world". The objective is to reduce the usage of fossil fuels by 70 percent by the year 2030 compared with the levels of 2010. Important factors to achieve this is to reduce the amount of transport, increase the use of biofuels and increase the fuel efficiency. The public transport sector plays an important part in reaching these objectives. There is a lot of potential in the biofuel market and in recent years there has been a development in the segment of electric buses in the city traffic. The purpose of the study is to develop a strategy proposal for the use of fossil-free fuels in Uppsala's public transport. The study is delimited to examine the use of fuels in city traffic with a focus on the introduction of electric buses. The report contains an environmental analysis of the advantages and risks associated with the fuels that the public transport administration UL decided to proceed with; biodiesel, biogas, and electricity. Based on the analysis, a strategy proposal was developed for how these fuels can be distributed in city traffic in Uppsala between 2019 - 2029. The study also examines how energy use, carbon dioxide emissions, and traffic pollution are affected if the strategy proposal is implemented. The environmental analysis suggests that biogas will continue to be used in Uppsala's city traffic, together with electric buses. Biodiesel is likely to come to better use in other areas of the transport sector in order for Sweden to reach the target of a fossil-independent fleet of vehicles in 2030. If the strategy proposal is followed the result shows that energy use and emissions of carbon dioxide and traffic pollution will decrease. Energy consumption will be reduced because of the energy efficiency of electric buses. The reduction of traffic pollution is due to the electric buses, but also because vehicles with the Euro V engine has been replaced with vehicles with Euro VI engine, which lowers traffic pollutions.
5

Transition to electric-powered buses in Stockholm inner citys public transport / Övergång till eldrivna bussar i Stockholm innerstads kollektivtrafik

Englund, Gustav, Westh, Martin January 2017 (has links)
Ökad urbaniseringen och ett annalkande klimathot skapar ett behov av miljövänlig kollektivtrafik. El är ett drivmedel som är på frammarsch. Det finns dock frågor ekonomi och hur praktiska lösningar ska vara utformade. Grundfrågeställningen för detta arbete har varit huruvida en övergång är möjlig att genomföra till 2022. Även de generella möjligheterna, förutsättningarna och konsekvenserna för en övergång till helt eldrivna bussar i Stockholms innerstad undersökts. Slutsatsen har dragits att det rent tekniskt är möjligt att genomföra en övergång till år 2022. Fordons- och batteriteknik finns. Det innebär dock att det kommer uppstå vissa frågor. Bland annat är eldrivna bussar mindre flexibla. Övergången kommer innebära stora kostnader som på sikt kan visa sig lönsamt då eldrift är ett billigare drivmedel. De hinder som finns för en övergång är bland annat de nuvarande trafikavtalen och otydlighet kring laddinfrastrukturen. En övergång kommer leda till positiva miljökonsekvenser såsom minskade koldioxidutsläpp och minskat buller.
6

BIG DATA ANALYTICS FOR BATTERY ELECTRIC BUS ENERGY MODELLING AND PREDICTION

Abdelaty, Hatem January 2021 (has links)
Battery electric buses (BEBs) bring several advantages to public transportation systems. With fixed routes and scheduled trips, the implementation of BEBs in the transit context is considered a seamless transition towards a zero greenhouse gases transit system. However, energy consumption uncertainty is a significant deterrent for mainstream implementation of BEBs. Demonstration and trial projects are often conducted to better understand the uncertainty in energy consumption (EC). However, the BEB's energy consumption varies due to uncertainty in operational, topological, and environmental attributes. This thesis aims at developing simulation, data-driven, and low-resolution models using big data to quantify the EC of BEBs, with the overarching goal of developing a comprehensive planning framework for BEB implementation in bus transit networks. This aim is achieved through four interwind objectives. 1) Quantify the operational and topological characteristics of bus transit networks using complex network theory. This objective provides a fundamental base to understanding the behaviour of bus transit networks under disruptive events. 2) Investigate the impacts of the vehicular, operational, topological, and external parameters on the EC of BEBs. 3) Develop and evaluate the feasibility of big-data analytics and data-driven models to numerically estimate BEB's EC. 4) Create an open-source low-resolution data-based framework to estimate the EC of BEBs. This framework integrates the modelling efforts in objectives 1-3 and offers practical knowledge for transit providers. Overall, the thesis provides genuine contributions to BEB research and offers a practical framework for addressing the EC uncertainty associated with BEB operation in the transit context. Further, the results offer transit planners the means to set up the optimum transit operations profile that improves BEB energy utilization, and in turn, reduces transit-related greenhouse gases. / Thesis / Doctor of Engineering (DEng)
7

Mobilidade sustentável no Brasil: análise de impactos energéticos do incentivo ao transporte coletivo e da eletrificação de ônibus. / Sustainable mobility in Brazil: energy impact assessment of incentives to collective transport and electrification of buses.

Barbosa, Maísa Ribeiro 22 August 2018 (has links)
A mobilidade de pessoas no mundo é não apenas um dos maiores desafios tecnológico e político do século XXI, como também uma área de alto impacto energético e ambiental. O presente trabalho busca analisar o transporte rodoviário de passageiros no Brasil pela perspectiva energética. Para a fundamentação teórica, aborda-se a dinâmica da mobilidade no mundo, alguns conceitos fundamentais e a relação entre o perfil de transportes, o perfil energético do setor e suas externalidades negativas. Em seguida, é apresentado o conceito de Mobilidade Sustentável, que busca apontar diretrizes para mitigação de externalidades e maior eficiência energética, dentre as quais estão a transição modal_ o incentivo a transportes públicos em detrimento dos individuais_ e a eletrificação de veículos. Como metodologia do trabalho, opta-se por simular os impactos energéticos de cenários brasileiros de eletrificação de ônibus (eletrificação progressiva, chegando a 71% da frota de ônibus até 2050) e de transição modal (manutenção de 35% da atividade de passageiros feita por ônibus), tanto individualmente, quanto combinados, através do modelo Global Transportation Roadmap. Os resultados mais expressivos de eficiência energética, economia de energia e demanda de eletricidade são observados na trajetória que combina ambas as estratégias, em que se chega a 105TWh de economia de energia no ano de 2050 e alcança-se uma demanda de energia elétrica de 67TWh. De 2020 a 2050, acumula-se uma economia de 7,6% da energia total demandada por transportes de ônibus e de automóvel no Brasil. Finalmente, analisam-se os resultados das simulações, suas limitações e recomendações de melhorias. / Worldwide, passenger mobility is not only one of the most significant political and technological challenges of the 21st century, but also a sector of high energetic and environmental impact. The present work aims to analyze road passenger transportation from the energy sector perspective. The theoretical basis approaches the dynamics of the mobility sector globally, some of its fundamental concepts and the nexus between transportation, energy consumption and negative externalities. Afterwards, it is conceptualized the Sustainable Mobility approach, and its guidelines for energy efficiency and externality mitigation, among which are Modal Shift (incentivizing the adoption of collective and efficient modes of transport) and vehicle electrification. The chosen work methodology is to simulate in the Global Transport Roadmap Model the energy impact of the following scenarios: 1) EB71: a progressive bus electrification scenario that achieves 71% of the national bus fleet electrified by 2050; 2) MS35: maintaining 35% of bus modal share, despite the historical records of bus-to-car shifts in the country; and 3) EB71.MS35: the combination of the previous strategies in a combined scenario. As a result, the EB71.MS35 scenario shows the highest rates of energy efficiency, energy savings and electricity demand: the projections for 2050 achieve 105TWh in energy savings and 67TWh of electricity demand. The cumulative energy saving from 2020 to 2050 reaches 7,6% of the energy demand for buses and automobiles in the same period. Finally, the simulation results are analyzed, and comments are made regarding limitations of the model, conclusions, and further steps for research.
8

Mobilidade sustentável no Brasil: análise de impactos energéticos do incentivo ao transporte coletivo e da eletrificação de ônibus. / Sustainable mobility in Brazil: energy impact assessment of incentives to collective transport and electrification of buses.

Maísa Ribeiro Barbosa 22 August 2018 (has links)
A mobilidade de pessoas no mundo é não apenas um dos maiores desafios tecnológico e político do século XXI, como também uma área de alto impacto energético e ambiental. O presente trabalho busca analisar o transporte rodoviário de passageiros no Brasil pela perspectiva energética. Para a fundamentação teórica, aborda-se a dinâmica da mobilidade no mundo, alguns conceitos fundamentais e a relação entre o perfil de transportes, o perfil energético do setor e suas externalidades negativas. Em seguida, é apresentado o conceito de Mobilidade Sustentável, que busca apontar diretrizes para mitigação de externalidades e maior eficiência energética, dentre as quais estão a transição modal_ o incentivo a transportes públicos em detrimento dos individuais_ e a eletrificação de veículos. Como metodologia do trabalho, opta-se por simular os impactos energéticos de cenários brasileiros de eletrificação de ônibus (eletrificação progressiva, chegando a 71% da frota de ônibus até 2050) e de transição modal (manutenção de 35% da atividade de passageiros feita por ônibus), tanto individualmente, quanto combinados, através do modelo Global Transportation Roadmap. Os resultados mais expressivos de eficiência energética, economia de energia e demanda de eletricidade são observados na trajetória que combina ambas as estratégias, em que se chega a 105TWh de economia de energia no ano de 2050 e alcança-se uma demanda de energia elétrica de 67TWh. De 2020 a 2050, acumula-se uma economia de 7,6% da energia total demandada por transportes de ônibus e de automóvel no Brasil. Finalmente, analisam-se os resultados das simulações, suas limitações e recomendações de melhorias. / Worldwide, passenger mobility is not only one of the most significant political and technological challenges of the 21st century, but also a sector of high energetic and environmental impact. The present work aims to analyze road passenger transportation from the energy sector perspective. The theoretical basis approaches the dynamics of the mobility sector globally, some of its fundamental concepts and the nexus between transportation, energy consumption and negative externalities. Afterwards, it is conceptualized the Sustainable Mobility approach, and its guidelines for energy efficiency and externality mitigation, among which are Modal Shift (incentivizing the adoption of collective and efficient modes of transport) and vehicle electrification. The chosen work methodology is to simulate in the Global Transport Roadmap Model the energy impact of the following scenarios: 1) EB71: a progressive bus electrification scenario that achieves 71% of the national bus fleet electrified by 2050; 2) MS35: maintaining 35% of bus modal share, despite the historical records of bus-to-car shifts in the country; and 3) EB71.MS35: the combination of the previous strategies in a combined scenario. As a result, the EB71.MS35 scenario shows the highest rates of energy efficiency, energy savings and electricity demand: the projections for 2050 achieve 105TWh in energy savings and 67TWh of electricity demand. The cumulative energy saving from 2020 to 2050 reaches 7,6% of the energy demand for buses and automobiles in the same period. Finally, the simulation results are analyzed, and comments are made regarding limitations of the model, conclusions, and further steps for research.
9

Investigating end-user acceptance of autonomous electric buses to accelerate diffusion

Herrenkind, Bernd, Brendel, Alfred Benedikt, Nastjuk, Ilja, Greve, Maike, Kolbe, Lutz M. 08 September 2021 (has links)
To achieve the widespread diffusion of autonomous electric buses (AEBs) and thus harness their environmental potential, a broad acceptance of new technology-based mobility concepts must be fostered. Still, there remains little known about the factors determining their acceptance, especially in the combination of vehicles with alternative fuels and autonomous driving modes, as is the case with AEBs. In this study, we first conducted qualitative research to identify relevant factors influencing individual acceptance of autonomously driven electric buses. We then developed a comprehensive research model that was validated through a survey of 268 passengers of an AEB, operated in regular road traffic in Germany. The results indicate that a mix of individual factors, social impacts, and system characteristics determine an individual’s acceptance of AEBs. Notably, it is important that users perceive AEBs, not only as advantageous, but also trustworthy, enjoyable, and in a positive social light. Our research supplements the existing corpora by demonstrating the importance of individual acceptance and incorporating it to derive policy implications.
10

Självkörande elbussar - Framtidens miljölösning

Tauberman, Klas, Olausson, Pontus January 2018 (has links)
Enligt (Regeringskansliet, 2017a) ska nettoutsläppen från Sveriges växthusgaser år 2045 inte påverka atmosfären vartefter Sveriges utsläpp ska bli negativa, vilket innebär att det används mer koldioxid än vad som släpps ut. För att uppnå klimatmålen kommer det krävas många nya lösningar i samhället. En allt mer drivande transportsektor med mer bilar på vägarna och fler parkeringsplatser är inte hållbart för framtida svensk trafik och arbetet mot klimatmålen. Att avlägsna oljedrivna fordon från transportsektorn skulle bidra till ett renare och mer attraktivt stadsklimat.   Studien syftar till att ta reda på hur en implementering av elektrisk-, även självkörande kollektivtrafik i Varberg ser ut, energimässigt, miljömässigt och ekonomiskt för tre stycken upplagda scenarier. I studien ingår även att undersöka ifall övertoner kan komma att inverka på elnätet. Projektet som är ett samarbete med Varberg Energi har uppkommit i samband med planeringen av det nya stadsområdet Västerport. I scenarierna finns tre olika bussar: en dieselbuss som återfinns i Varberg idag, en generell elbuss samt en självkörande elbuss som kallas Navya.   Den mängd passagerare som ska transporteras och vilken miljöpåverkan bussarna ger har stor inverkan på slutsatsen i rapporten. Med en svensk fossilfri bussflotta år 2020 visar denna rapport att Navyan är primärt rekommenderad upp till 15 personer och därefter är elbussen sekundärt rekommenderad. Implementering av elbussar är fullt möjlig och gör ingen betydande inverkan på det befintliga elnätet idag. / According to (Regeringskansliet, 2017a) Sweden’s greenhouse gas emissions shall not affect the atmosphere by the year 2045, which then becomes negative, this means that more carbon dioxide will be consumed rather than released into the atmosphere. In order to reach the climate goals, many new solutions to the society are required. A bigger transport sector with more cars and parking spaces is not sustainable for neither the future transport sector, nor the progressive work toward the climate goals. By removing oil-operated vehicles from the streets, a significant contribution to a cleaner city climate would be achieved.   The study aims to find out if an implementation of electric buses is possible in Varberg. A couple of key questions are raised: how much energy is required to support the buses? What are the costs of the various scenarios proposed? Will there be any problems with supporting many buses, in terms of harmonics and the electric power grid? The project, which is a cooperation with Varberg Energi, is proposing a realization of a new city area called Västerport, which would start construction 2020. The report constitutes three scenarios with a diesel bus, which is used in Varberg today, an electric bus and an autonomous electric minibus called Navya.   The number of passengers to be transported and the environmental effect of the buses has a big impact on the conclusion of the report. With a fossil free bus fleet by 2020, this report shows that the Navya is primarily recommended up to 15 passengers, and the electric bus for more passengers. The report concludes that the implementation of electric buses is possible. It will not have a considerable impact on the existing power grid and will contribute to a cleaner and more attractive city.

Page generated in 0.0688 seconds