• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 547
  • 70
  • 62
  • 46
  • 43
  • 24
  • 21
  • 16
  • 8
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 1075
  • 1075
  • 323
  • 258
  • 216
  • 210
  • 197
  • 172
  • 124
  • 114
  • 111
  • 105
  • 105
  • 104
  • 103
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

The Effect of Pressure on Cathode Performance in the Lithium Sulfur Battery

Campbell, Christopher January 2013 (has links)
This study was undertaken to understand the effect of applied pressure on the performance of the lithium sulfur cathode. Compressible carbon based cathodes and novel nickel based cathodes were fabricated. For each cathode, pore volume and void volume were quantified and void fraction was calculated, compression under 0 to 2MPa was measured, and lithium-sulfur cells were assembled and cycled at pressures between 0 and 1MPa. The cathodes studied had void fractions in the range of 0.45 to 0.90. Specific discharge capacities between 200 and 1100 mAh/g under 1MPa were observed in carbon-based cathodes. Nickel-based cathodes showed increased specific discharge capacity of up to 1300 mAh/g, with no degradation of performance under pressure. The high correlation of specific discharge capacity and void fraction, in conjunction with previous work, strongly suggest that the performance of lithium-sulfur cathodes is highly dependent on properties that influence ionic mass transport in the cathode.
322

SIMULTANEOUS CHARGING AND DISCHARGING OF A LATENT HEAT ENERGY STORAGE SYSTEM FOR USE WITH SOLAR DOMESTIC HOT WATER

Murray, Robynne 26 July 2012 (has links)
Sensible energy storage for solar domestic hot water (SDHW) systems is space consuming and heavy. Latent heat energy storage systems (LHESSs) offer a solution to this problem. However, the functionality of a LHESS during simultaneous charging/discharging, an operating mode encountered when used with a SDHW, had not been studied experimentally. A small scale vertical cylindrical LHESS, with dodecanoic acid as the phase change material (PCM), was studied during separate and simultaneous charging/discharging. Natural convection was found to have a strong influence during melting, but not during solidification. During simultaneous operation heat transfer was limited by the high thermal resistance of the solid PCM. However, when the PCM was melted, direct heat transfer occurred between the hot and cold heat transfer fluids, indicating the significance of the PCM phase on heat transfer in the system. The results of this research will lead to more optimally designed LHESS for use with SDHW. ?
323

Design and Evaluation of Hybrid Energy Storage Systems for Electric Powertrains

Mikkelsen, Karl January 2010 (has links)
At the time of this writing, increasing pressure for fuel efficient passenger vehicles has prompted automotive manufactures to invest in the research and development of electrically propelled vehicles. This includes vehicles of strictly electric drive and hybrid electric vehicles with internal combustion engines. To investigate some of the many technological innovations possible with electric power trains, the AUTO21 network of centres of excellence funded project E301-EHV; a project to convert a Chrysler Pacifica into a hybrid electric vehicle. The converted vehicle is intended for use as a test-bed in the research and development of a variety of advances pertaining to electric propulsion. Among these advances is hybrid energy storage, the focus of this investigation. A key difficulty of electric propulsion is the portable storage or provision of electricity, challenges are twofold; (1) achieving sufficient energy capacity for long distance driving and (2) ample power delivery to sustain peak driving demands. Where gasoline is highly energy dense and may be burned at nearly any rate, storing large quantities of electrical energy and supplying it at high rate prove difficult. Furthermore, the demands of regenerative braking require the storage system to undergo frequent current reversals, reducing the service life of some electric storage systems. A given device may be optimized for one of either energy storage or power delivery, at the sacrifice of the other. A hybrid energy storage system (HESS) attempts to address the storage needs of electric vehicles by combining two of the most popular storage technologies; lithium ion batteries, ideal for high energy capacity, and ultracapacitors, ideal for high power discharge and frequent cycles. Two types of HESS are investigated in this study; one using energy-dense lithium ion batteries paired with ultracapacitors and the other using energy-dense lithium ion batteries paired with ultra high powered batteries. These two systems are compared against a control system using only batteries. Three sizes of each system are specified with equal volume in each size. They are compared for energy storage, energy efficiency, vehicle range, mass and relative demand fluctuation when simulated for powering a model Pacifica through each of five different drive cycles. It is shown that both types of HESS reduce vehicle mass and demand fluctuation compared to the control. Both systems have reduced energy efficiency. In spite of this, a battery-battery system increases range with greater storage capacity, but battery-capacitor systems have reduced range. It is suggested that further work be conducted to both optimize the design of the hybrid storage systems, and improve the control scheme allocating power demand across the two energy sources.
324

The Potential of Energy Storage Systems with Respect to Generation Adequacy and Economic Viability

Bradbury, Kyle Joseph January 2013 (has links)
<p>Intermittent energy resources, including wind and solar power, continue to be rapidly added to the generation fleet domestically and abroad. The variable power of these resources introduces new levels of stochasticity into electric interconnections that must be continuously balanced in order to maintain system reliability. Energy storage systems (ESSs) offer one potential option to compensate for the intermittency of renewables. ESSs for long-term storage (1-hour or greater), aside from a few pumped hydroelectric installations, are not presently in widespread use in the U.S. The deployment of ESSs would be most likely driven by either the potential for a strong internal rate of return (IRR) on investment and through significant benefits to system reliability that independent system operators (ISOs) could incentivize.</p><p>To assess the potential of ESSs three objectives are addressed. (1) Evaluate the economic viability of energy storage for price arbitrage in real-time energy markets and determine system cost improvements for ESSs to become attractive investments. (2) Estimate the reliability impact of energy storage systems on the large-scale integration of intermittent generation. (3) Analyze the economic, environmental, and reliability tradeoffs associated with using energy storage in conjunction with stochastic generation.</p><p>First, using real-time energy market price data from seven markets across the U.S. and the physical parameters of fourteen ESS technologies, the maximum potential IRR of each technology from price arbitrage was evaluated in each market, along with the optimal ESS system size. Additionally, the reductions in capital cost needed to achieve a 10% IRR were estimated for each ESS. The results indicate that the profit-maximizing size of an ESS is primarily determined by its technological characteristics (round-trip charge/discharge efficiency and self-discharge) and not market price volatility, which instead increases IRR. This analysis demonstrates that few ESS technologies are likely to be implemented by investors alone.</p><p>Next, the effects of ESSs on system reliability are quantified. Using historic data for wind, solar, and conventional generation, a correlation-preserving, copula-transform model was implemented in conjunction with Markov chain Monte Carlo framework for estimating system reliability indices. Systems with significant wind and solar penetration (25% or greater), even with added energy storage capacity, resulted in considerable decreases in generation adequacy.</p><p>Lastly, rather than analyzing the reliability and costs in isolation of one another, system reliability, cost, and emissions were analyzed in 3-space to quantify and visualize the system tradeoffs. The modeling results implied that ESSs perform similarly to natural gas combined cycle (NGCC) systems with respect to generation adequacy and system cost, with the primary difference being that the generation adequacy improvements are less for ESSs than that of NGCC systems and the increase in LCOE is greater for ESSs than NGCC systems.</p><p>Although ESSs do not appear to offer greater benefits than NGCC systems for managing energy on time intervals of 1-hour or more, we conclude that future research into short-term power balancing applications of ESSs, in particular for frequency regulation, is necessary to understand the full potential of ESSs in modern electric interconnections.</p> / Dissertation
325

NUMERICAL STUDY OF THE EFFECTS OF FINS AND THERMAL FLUID VELOCITIES ON THE STORAGE CHARACTERISTICS OF A CYLINDRICAL LATENT HEAT ENERGY STORAGE SYSTEM

Ogoh, Wilson 27 July 2010 (has links)
This thesis work presents a numerical study of the effects of fins and thermal fluid velocities on the storage characteristics of a cylindrical latent heat energy storage system (LHESS). The work consists of two main components: 1. The development of a numerical method to study and solve the phase change heat transfer problems encountered in a LHESS during charging of the system, which results in melting of the phase change material (PCM). The numerical model is based on the finite element method. The commercial software COMSOL Multiphysics was used to implement it. The effective heat capacity method was applied in order to account for the large amount of latent energy stored during melting of a PCM, and the moving interface between the solid and liquid phases. The fluid flow, heat transfer and phase change processes were all validated using known analytical solutions or correlations. 2. Due to the low thermal conductivity of PCMs, the heat transfer characteristics of an enhanced LHESS was studied numerically. The effects of fins and the thermal fluid velocity on the melting rate of the PCM in the LHESS were analyzed. Results obtained for configurations having between 0 and 27 fins show that the heat transfer rate increases with addition of fins and thermal fluid velocity. The effect of the HTF velocity was observed to be small with few fin configurations since the thermal resistance offered by the LHESS system, mostly PCM, is vastly more important under these conditions; while its effect becomes more pronounced with addition of fins, since the overall thermal resistance decreases greatly with the addition of fins. The total energy stored after 12 hours for 0 and 27 fins configurations range between 3.6 MJ and 39.7 MJ for a thermal fluid velocity of 0.05 m/s and between 3.7 MJ and 57 MJ for a thermal fluid velocity of 0.5 m/s. The highest system efficiencies for the 0.05 m/s and 0.5 m/s, obtained with 27 fins configuration are 68.9% and 97.9% respectively.
326

PHASE CHANGE BEHAVIOUR OF LAURIC ACID IN A HORIZONTAL CYLINDRICAL LATENT HEAT ENERGY STORAGE SYSTEM

Liu, Chang 13 August 2012 (has links)
This work presents an experimental and numerical study of phase change behaviour in a horizontal cylindrical latent heat energy storage system (LHESS). Fins with two orientations, straight fins and angled fins, are added into the PCM to enhance heat transfer. The PCM used in this study is lauric acid which has desirable thermal properties for LHESS. The experimental work concentrates on studying the heat transfer mechanism during phase change, impacts of the HTF inlet temperature and HTF flow rates. Moreover, heat transfer enhancement effectiveness of straight fins and angles fins is compared. Numerical model is simulated using COMSOL Multiphysics software package. It is observed that conduction is the dominant heat transfer mechanism during the initial stage of charging, and natural convection plays a more important role afterwards. Conduction plays a major role during solidification. Complete melting time is affected by the HTF inlet temperature and HTF flow rates.
327

Wind Allocation Methods for Improving Energy Security in Residential Space and Hot Water Heating

Lakshminarayanan, Harisubramanian 22 August 2012 (has links)
Worldwide, wind energy added to the energy mix of electricity suppliers may be seen as way of improving energy security and reducing greenhouse gas emissions. However, due to wind's variability wind electricity cannot be used to meet demands which require a continuous supply of electricity. One solution to the variability problem is to adopt services that are capable of storing energy for use at a later time. Five new wind-allocation methods are considered to maximize its use of wind-electricity while at the same time reducing emissions. Simulations results, show that households benefit from an annual savings of about 30% to 36% with an estimated payback period ranging between 3.5 and 5.5 years. Emissions reduction in the off-peak scenarios is between 32% and 35% and about 86% in the anytime scenario. Heating demands satisfied ranges between 75% and 96% and total wind used for heating is between 3%-4%.
328

Reliability Modeling and Simulation of Composite Power Systems with Renewable Energy Resources and Storage

Kim, Hagkwen 16 December 2013 (has links)
This research proposes an efficient reliability modeling and simulation methodology in power systems to include photovoltaic units, wind farms and storage. Energy losses by wake effect in a wind farm are incorporated. Using the wake model, wind shade, shear effect and wind direction are also reflected. For solar modules with titled surface, more accurate hourly photovoltaic power in a specific location is calculated with the physical specifications. There exists a certain level of correlation between renewable energy and load. This work uses clustering algorithms to consider those correlated variables. Different approaches are presented and applied to the composite power system, and compared with different scenarios using reliability analysis and simulation. To verify the results, reliability indices are compared with those from original data. As the penetration of renewables increases, the reliability issues will become more important because of the intermittent and non-dispatchable nature of these sources of power. Storage can provide the ability to regulate these fluctuations. The use of storage is investigated in this research. To determine the operating states and transition times of all turbines, Monte Carlo is used for system simulation in the thesis. A conventional power system from IEEE Reliability Test Systems is used with transmission line capacity, and wind and solar data are from National Climatic Data Center and National Renewal Energy Laboratory. The results show that the proposed technique is effective and efficient in practical applications for reliability analysis.
329

Latent Heat Thermal Energy Storage Device for Automobile Applications

Shih, Po-Chen 28 November 2013 (has links)
Driving with the cold engine increases fuel consumption and greenhouse gases emissions. A latent heat energy storage device has been proposed to recover waste heat and reduce engine warm-up time by using phase change materials (PCMs) as an energy storage medium. Two types of paraffin waxes and 50/50 mixture of the two have been examined to characterize their behaviors under repetitive heating/freezing. From the results, the heat transfer is more effective in the case of narrower spacing distances between the cooling plates and high circulating flow rate of the heat transfer fluid. A 50/50 mixture of two paraffin waxes also provides better heat transfer due to the possible existence of both conduction and natural convection. The results of the metal block simulation experiments demonstrated the potential of latent heat TES&rsquo;s for use in engine warm-up.
330

Latent Heat Thermal Energy Storage Device for Automobile Applications

Shih, Po-Chen 28 November 2013 (has links)
Driving with the cold engine increases fuel consumption and greenhouse gases emissions. A latent heat energy storage device has been proposed to recover waste heat and reduce engine warm-up time by using phase change materials (PCMs) as an energy storage medium. Two types of paraffin waxes and 50/50 mixture of the two have been examined to characterize their behaviors under repetitive heating/freezing. From the results, the heat transfer is more effective in the case of narrower spacing distances between the cooling plates and high circulating flow rate of the heat transfer fluid. A 50/50 mixture of two paraffin waxes also provides better heat transfer due to the possible existence of both conduction and natural convection. The results of the metal block simulation experiments demonstrated the potential of latent heat TES&rsquo;s for use in engine warm-up.

Page generated in 0.0593 seconds