• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 17
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 152
  • 32
  • 19
  • 19
  • 15
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

THE ROLE OF ENERGY DISSIPATION, SUPERELASTICITY, AND SHAPE MEMORY EFFECTS IN ARCHITECTED MATERIALS FOR ENGINEERING APPLICATIONS

Kristiaan Hector (13892400) 13 October 2022 (has links)
<p>The main goal of this thesis research is to expand the range of unique properties of phase transforming cellular materials (PXCMs), a new class of architected materials, and to extend their applicability both in the engineering disciplines and in the medical field. A novel aspect of PXCMs is their unique energy dissipation during loading via a snapping mechanism associated with a geometric transition between one stable configuration to another stable configuration at the unit cell level. Phase transformation is analogous to displacive transformations, such as martensitic transformations in shape memory alloys, with no change in configurational entropy. To accomplish this goal, three problem areas are addressed with the first exploring the effects of length scale as added structural hierarchy on material properties and energy dissipation, the second providing an analysis of the durability of architected materials via a novel additive manufacturing method, and the third, an extension into the medical field. Two examples are provided that demonstrate the effects of length scale as added structural hierarchy on material properties, and a machine learning approach for the feasible design of materials with additional levels of structural hierarchy is presented. A simple design approach coupled with a novel additive manufacturing method is discussed for the design of architected materials with high durability. Lastly, a concept for de-clogging bile stents via a temperature driven, shape-memory mechanism inspired by peristaltic locomotion in the human esophagus is presented.</p>
152

Coarse-graining for gradient systems and Markov processes

Stephan, Artur 29 October 2021 (has links)
Diese Arbeit beschäftigt sich mit Coarse-Graining (dt. ``Vergröberung", ``Zusammenfassung von Zuständen") für Gradientensysteme und Markov-Prozesse. Coarse-Graining ist ein etabliertes Verfahren in der Mathematik und in den Naturwissenschaften und hat das Ziel, die Komplexität eines physikalischen Systems zu reduzieren und effektive Modelle herzuleiten. Die mathematischen Probleme in dieser Arbeit stammen aus der Theorie der Systeme interagierender Teilchen. Hierbei werden zwei Ziele verfolgt: Erstens, Coarse-Graining mathematisch rigoros zu beweisen, zweitens, mathematisch äquivalente Beschreibungen für die effektiven Modelle zu formulieren. Die ersten drei Teile der Arbeit befassen sich mit dem Grenzwert schneller Reaktionen für Reaktionssysteme und Reaktions-Diffusions-Systeme. Um effektive Modelle herzuleiten, werden nicht nur die zugehörigen Reaktionsratengleichungen betrachtet, sondern auch die zugrunde liegende Gradientenstruktur. Für Gradientensysteme wurde in den letzten Jahren eine strukturelle Konvergenz, die sogenannte ``EDP-Konvergenz", entwickelt. Dieses Coarse-Graining-Verfahren wird in der vorliegenden Arbeit auf folgende Systeme mit langsamen und schnellen Reaktionen angewandt: lineare Reaktionssysteme (bzw. Markov-Prozesse auf endlichem Zustandsraum), nichtlineare Reaktionssysteme, die das Massenwirkungsgesetz erfüllen, und lineare Reaktions-Diffusions-Systeme. Für den Grenzwert schneller Reaktionen wird eine mathematisch rigorose und strukturerhaltende Vergröberung auf dem Level des Gradientensystems inform von EDP-Konvergenz bewiesen. Im vierten Teil wird der Zusammenhang zwischen Gleichungen mit Gedächtnis und Markov-Prozessen untersucht. Für Gleichungen mit Gedächtnisintegralen wird explizit ein größer Markov-Prozess konstruiert, der die Gleichung mit Gedächtnis als Teilsystem enthält. Der letzte Teil beschäftigt sich mit verschieden Diskretisierungen für den Fokker-Planck-Operator. Dazu werden numerische und analytische Eigenschaften untersucht. / This thesis deals with coarse-graining for gradient systems and Markov processes. Coarse-graining is a well-established tool in mathematical and natural sciences for reducing the complexity of a physical system and for deriving effective models. The mathematical problems in this work originate from interacting particle systems. The aim is twofold: first, providing mathematically rigorous results for physical coarse-graining, and secondly, formulating mathematically equivalent descriptions for the effective models. The first three parts of the thesis deal with fast-reaction limits for reaction systems and reaction-diffusion systems. Instead of deriving effective models by solely investigating the associated reaction-rate equation, we derive effective models using the underlying gradient structure of the evolution equation. For gradient systems a structural convergence, the so-called ``EDP-convergence", has been derived in recent years. In this thesis, this coarse-graining procedure has been applied to the following systems with slow and fast reactions: linear reaction systems (or Markov process on finite state space), nonlinear reaction systems of mass-action type, and linear reaction-diffusion systems. For the fast-reaction limit, we perform rigorous and structural coarse-graining on the level of the gradient system by proving EDP-convergence. In the fourth part, the connection between memory equations and Markov processes is investigated. Considering linear memory equations, which can be motivated from spatial homogenization, we explicitly construct a larger Markov process that includes the memory equation as a subsystem. The last part deals with different discretization schemes for the Fokker–Planck operator and investigates their analytical and numerical properties.

Page generated in 0.0727 seconds