• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 14
  • 10
  • 8
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 154
  • 154
  • 40
  • 27
  • 19
  • 18
  • 18
  • 17
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Calculations of Nuclear Energies Using the Energy Density Formalism

Pu, William Wei-Ta 08 1900 (has links)
The energy density formalism (EDF) is used to investigate two problems. The EDF is a phenomenological method that incorporates as much knowledge of infinite nuclear matter as possible. In this formalism the energy of the nucleus is expressed as a functional of its density. The nucleus energy is obtained by minimizing the function, with respect to the density. In this report, the EDF is used to investigate the mercury isotope shift anomaly following the aforementioned suggestion. Specifically, nucleon densities with different degrees of central depression are generated. Energies corresponding to these densities are obtained. The density with the minimum energy is the preferred one. Based on the findings of the present work, it can be concluded that a central depression in the lighter mercury isotopes does not-appear- to be a possible explanation for the isotope shift anomaly. And the anomaly remains unresolved.
32

The Investigation of Gravity Waves in the Mesosphere / Lower Thermosphere and Their Effect on Sporadic Sodium Layer

Cai, Xuguang 01 December 2017 (has links)
Gravity waves in the atmosphere are the waves with gravity and buoyancy force as the restoring forces. Gravity waves will significantly impact the Mesosphere Lower / Thermosphere (MLT), and the breaking of gravity waves is the key factor to cause the cool summer and warm winter in the Mesopause region. Therefore, it is important for us to investigate gravity waves. In this dissertation, we mainly use USU Na lidar data to explore gravity waves in the MLT. The exploration is made up of two projects. One is the investigation of gravity wave breaking and the associated dynamic instability by USU Na Lidar and Advanced Mesosphere Temperature Mapper (AMTM). Another is the calculation of gravity wave temperature perturbations and potential energy density by least-squares fitting based on the data from the full-diurnal cycle observation of Na lidar. The sporadic sodium layer is the sharp increase of Na density in a small vertical range (several kilometers) above the Na main layer in the MLT. The formation of the sporadic sodium layer above 100 km remains unknown until now. Here we will investigate the mechanism of the generation of sporadic sodium layer using numeric modeling, including the effect of tide and gravity wave on the variation of Na density.
33

Sensing systems for active control of sound transmission into cavities

Cazzolato, Ben January 1999 (has links)
Driven by the need to reduce the sound transmitted into aircraft cabins from the power plant, this thesis investigates the active control of sound transmitted through a structure into coupled enclosures. In particular, it examines alternatives to conventional microphone and accelerometer error sensors. This study establishes a design framework for the development and analysis of an active noise control system which can be applied to any complex vibro-acoustic system. The design approach has focused on using techniques presently used in industry to enable the transfer of the active noise control technology from the research stage into practical noise control systems. The structural and acoustic sub-systems are modelled using FEA to estimate the in vacuo structural modal response of the structure and the acoustic pressure modal response (with rigid boundary conditions) of the interior cavity. The acoustic and structural systems are then coupled using modal coupling theory. Within this framework, two novel error sensors aimed at overcoming observability problems suffered by traditional microphone and accelerometer sensors are investigated: namely, acoustic energy density sensors and shaped radiation modal vibration sensors. The principles of the measurement of energy density are discussed and the errors arising from its measurement using two and three-microphone sensor configurations are considered for a one-dimensional reactive sound field and a plane wave sound field. The error analysis encompasses finite separation effects, instrumentation errors (phase and sensitivity mismatches, and physical length errors), diffraction and interference effects, and other sources of error (mean flow and turbulence, temperature and humidity, statistical effects). Following the one-dimensional study, four 3-axis energy density sensor designs are proposed and error analysis is conducted over the same acoustic fields as for the one-dimensional study. The design and construction of the simplest arrangement of the 4 three-axis sensors is discussed with reference to design issues, performance and limitations. The strategy of using energy density control is investigated numerically for a purely acoustic system and a coupled panel-cavity system. Energy density control is shown to provide greater local and global control compared to that possible using an equivalent number of microphones. The performance of the control system is shown to be relatively insensitive to the placement of the energy density sensor. For an enclosed cavity system with high modal overlap, the zone of local control achieved by minimising energy density is found to be approximately the same as the zone of local control obtained when min-imising pressure and pressure gradient in a diffuse sound field. It is also shown that if there is only one control source used per energy density sensor, global control will be almost optimum. The addition of further control sources leads to an improvement in global control, however, the control is no longer optimal. The control system is found to be very tolerant of errors in the estimate of the energy density and thus the use of simpler energy density sensor designs is justified. Finally, an experiment is presented in which the global performance achieved by controlling a three-axis energy density sensor is compared with the performance achieved by minimising the acoustic potential energy and minimising the sum of squared pressures at a finite number of microphones. The experimental results are found to reflect the numerical results. The active minimisation of harmonic sound transmission into an arbitrarily shaped enclosure using error signals derived from structural vibration sensors is investigated numerically and experimentally. It is shown that by considering the dynamics of the coupled system, it is possible to derive a set of "e;structural radiation"e; modes which are orthogonal with respect to the global potential energy of the coupled acoustic space and which can be sensed by structural vibration sensors. Minimisation of the amplitudes of the "e;radiation modes"e; is thus guaranteed to minimise the interior acoustic potential energy. The coupled vibro-acoustic system under investigation is modelled using Finite Element Analysis which allows systems with complex geometries to be investigated rather than limiting the analysis to simple, analytically tractable systems. Issues regarding the practical implementation of sensing the orthonormal sets of structural radiation modes are discussed. Specific examples relating to the minimisation of the total acoustic potential energy within a curved rectangular panel and a coupled cavity are given, comparing the performance offered using vibration sensing of the radiation modes on the structure with the more traditional error sensing; namely, the discrete sensing of the structural kinetic energy on the structural boundary and the acoustic potential energy in the enclosed space approximated by the mean squared pressures at several locations. / Thesis (Ph.D.)--Mechanical Engineering, 1999.
34

Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries

Meng, Shirley Y., Li, Yi, Arroyo, Elena M., Ceder, Gerbrand 01 1900 (has links)
We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely packed compared to the crystalline alloys of the same compositions; they usually have higher ionic conductivity than crystalline materials, which make rapid lithium diffusion possible. Many metallic systems have higher theoretical capacity for lithium than graphite/carbon; in addition irreversible capacity loss can be avoided in metallic systems. With careful processing, we are able to obtain nano-crystalline phases dispersed in the amorphous metallic glass matrix. These crystalline regions may form the active centers with which lithium reacts. The surrounding matrix can respond very well to the volume changes as these nano-size regions take up lithium. A comparison study of various kinds of anode materials for lithium rechargeable batteries is carried out. / Singapore-MIT Alliance (SMA)
35

Optimization of Polymer-based Nanocomposites for High Energy Density Applications

Barhoumi Ep Meddeb, Amira 2012 May 1900 (has links)
Monolithic materials are not meeting the increasing demand for flexible, lightweight and compact high energy density dielectrics. This limitation in performance is due to the trade-off between dielectric constant and dielectric breakdown. Insulating polymers are of interest owing to their high inherent electrical resistance, low dielectric loss, flexibility, light weight, and low cost; however, capacitors produced with dielectric polymers are limited to an energy density of ~1-2 J/cc. Polymer nanocomposites, i.e., high dielectric particles embedded into a high dielectric breakdown polymer, are promising candidates to overcome the limitations of monolithic materials for energy storage applications. The main objective of this dissertation is to simultaneously increase the dielectric permittivity and dielectric breakdown without increasing the loss, resulting in a significant enhancement in the energy density over the unmodified polymer. The key is maintaining a low volume content to ensure a high inter-particle distance, effectively minimizing the effect of local field on the composite's dielectric breakdown. The first step is studying the particle size and aspect ratio effects on the dielectric properties to ensure a judicious choice in order to obtain the highest enhancement. The best results, as a combination of dielectric constant, loss and dielectric breakdown, were with the particles with the highest aspect ratio. Further improvement in the dielectric behavior is observed when the nanoparticles surface is chemically tailored to tune transport properties. The particles treatment leads to better dispersion, planar distribution and stronger interaction with the polymer matrix. The planar distribution of the high aspect ratio particles is essential to limit the enhancement of local fields, where minimum local fields result in higher dielectric breakdown in the composite. The most significant improvement in the dielectric properties is achieved with chemically-treated nano TiO2 with an aspect ratio of 14 at a low 4.6 vol% loading, where the energy density increased by 500% compared to pure PVDF. At this loading, simultaneous enhancement in the dielectric constant and dielectric breakdown occurs while the dielectric loss remains in the same range as that of the pristine polymer.
36

き裂前縁を含む面の非連続性を考慮したき裂モデルの提案とそのき裂パラメータ評価への適用

渡辺, 勝彦, Watanabe, Katsuhiko, 畔上, 秀幸, Azegami, Hideyuki 09 1900 (has links)
No description available.
37

き裂エネルギ密度に基づくき裂の安定・不安定クライテリオンの提案と従来のクライテリオンの物理的位置付け

渡辺, 勝彦, Watanabe, Katsuhiko, 畔上, 秀幸, Azegami, Hideyuki 04 1900 (has links)
No description available.
38

き裂エネルギ密度による安定成長き裂の破壊抵抗評価 (第3報, 薄板延性き裂破壊抵抗の板厚効果)

渡辺, 勝彦, Watanabe, Katsuhiko, 畔上, 秀幸, Azegami, Hideyuki, 平野, 八州男, Hirano, Yasuo 08 1900 (has links)
No description available.
39

き裂エネルギ密度による安定成長き裂の破壊抵抗評価 (第4報, J積分による評価との比較)

渡辺, 勝彦, Watanabe, Katsuhiko, 畔上, 秀幸, Azegami, Hideyuki 08 1900 (has links)
No description available.
40

き裂エネルギ密度による安定成長き裂の破壊抵抗評価 (第5報, き裂先端開口変位, 開口角による評価との比較)

渡辺, 勝彦, Watanabe, Katsuhiko, 畔上, 秀幸, Azegami, Hideyuki, 平野, 八州男, Hirano, Yasuo 11 1900 (has links)
No description available.

Page generated in 0.0515 seconds