• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 10
  • 10
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flexible Thermoelectric Generators on Silicon Fabric

Sevilla, Galo T. 11 1900 (has links)
In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart textile, wearable electronics and many other exciting applications. However, low thermal budget processing and fundamentally limited electron mobility hinders its potential to be competitive with well established and highly developed silicon technology. The use of silicon in flexible electronics involve expensive and abrasive materials and processes. In this work, high performance flexible thermoelectric energy harvesters are demonstrated from low cost bulk silicon (100) wafers. The fabrication of the micro- harvesters was done using existing silicon processes on silicon (100) and then peeled them off from the original substrate leaving it for reuse. Peeled off silicon has 3.6% thickness of bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. The demonstrated generic batch processing shows a pragmatic way of peeling off a whole silicon circuitry after conventional fabrication on bulk silicon wafers for extremely deformable high performance integrated electronics. In summary, by using a novel, low cost process, this work has successfully integrated existing and highly developed fabrication techniques to introduce a flexible energy harvester for sustainable applications.
2

Design and development of hybrid energy harvesters

Li, Xuan January 2018 (has links)
Hybrid energy harvesters (HEHs) targeting multiple energy forms have been drawing increasing interest in recent years. While large scale photovoltaic power plants are capable of providing energy for domestic usage, research has also been focused on kinetic energy harvester with less power output which can be integrated into self-powered electronics such as implantable device, remote wireless sensor, wearables, etc. A number of successful designs of hybrid energy harvesters have been demonstrated which could scavenge solar and kinetic energy simultaneously. However the structures remain complicated; the majority of the designs involve different types of energy harvesters connected in series, which involves complex fabrication processes. Here, a simple structure based on a p-n junction piezoelectric nanogenerator (NG) was designed. The utilization of columnar piezoelectric n-type ZnO nanorods coated with light absorber layer enabled the device to harvest both kinetic and solar energy. This was adapted to either form a N719-based dye-sensitized solar cell (N719-HEH), or a perovskite solar cell (PSC-HEH). To allow high processing temperatures while maintaining mechanical flexibility, Corning© Willow™ (CW) glass substrate was used and compared to the more common ITO/PET. CW showed 56% lower charge transfer resistance and a related 4 times fold increase in power conversion efficiency for N719-HEHs. Oscillation (NG effect) and illumination (PV effect) testing indicated that both N719-HEHS and PSC-HEHs operated as kinetic and solar energy harvesters separately, with the current generated by the photovoltaic orders of magnitude greater than it from mechanical excitation. In addition, under illumination, both N719-HEHs and PSC-HEHs demonstrated further current output enhancement when oscillation was applied. The fact that the current output under NG+PV condition was higher than the summation of current output achieved under NG and PV conditions individually, suggests the piezoelectric potential originated from ZnO affected the charge dynamics within the devices. Thus, HEHs with enhanced output were successfully designed and developed.
3

Switchless Electrostatic Vibration Micro-Power Generators

Mahmoud, Mohamed A. E. January 2010 (has links)
Energy harvesting from the surrounding environment has become a hot topic in research as an alternative powering solution. The concept deals with scavenging, as well as, harvesting energy from the surrounding energy sources. Harvesting vibrations, through Micro-Power Generators (MPGs) , has drawn a lot of attention recently due to the reduction in the power requirement of the current sensors and integrated ciruits, and the abundance of ambient vibrations in many environments. Vibration Micro-Power generators (VMPGs) use one of three transduction mechanisms: piezoelectric, electromagnetic or electrostatic. Although electrostatic MPGs are the most compatible mechanism with ICs technology, many challenges face their optimal operation including low efficiency due to power electronics switching losses, the need for pre-charge, and the inability to operate in vibration environments with low frequencies and amplitudes. The objective of this thesis is to develop novel electrostatic micro-power generators using switchless architecture to achieve low cost, small footprint, self-sustained and optimal power generation in different vibration environments including low frequencies and amplitudes. The first electrostatic MPG uses an out-of-plane capacitive transducer. The new generator is sensitive enough to extract output power at very low base excitations. It is designed to use ready-made electret as a charging source and is therefore portable and self-sustained. Moreover, the new MPG can be configured as a wideband MPG in its impact mode of operation. A bandwidth of up to 9 Hz has been realized in this mode of operation. An improved version of the MPG is also presented that produces almost 1mW output power at a base excitation amplitude and frequency of 0.08g (RMS) and 86 Hz. Two nonlinear models developed for the free-flight and impact modes of operation of the MPG are presented to allow future analysis and optimization of the system. The second electrostatic MPG uses a novel interdigitated in-plane parallel plate electrostatic transducer. The new implementation can achieve 78% more output power than the original cited implementation. The MPG is fabricated using MEMS surface micromachining. The MPG introduces a new beam suspension system in which the source voltage is unlimited by the pull-in instability and low MPG center frequency can be realized. The MPG uses charged silicon nitride as a charging source. The MPG produces 65 mV at a base acceleration amplitude and frequency of 2g and 1.1 kHz. The prototype achieves 27% less resonance frequency with only one eight the size of the previous implementation. A third electrostatic MPG architecture is introduced. The new architecture eliminates the need for restoring force elements (springs) in the MPG. The architecture can realize arbitrarily low MPG center frequency. It is suitable for both rectilinear and cylindrical structures and can be used with different vibration energy transduction methods. A prototype is fabricated and tested to demonstrate the feasibility of this architecture. The center frequency of the prototype is found to be 2 Hz demonstrating low frequency operation. The nonlinear behavior of switchless (continuous) electrostatic MPGs is further studied for optimal power operation. A consistent approximate analytical solution is developed to describe the nonlinear behavior of switchless comb-finger electrostatic MPGs. The method of multiple scales is used to develop such model. The model was found to be valid for MPGs operating under tight electromechanical coupling conditions and for moderately-large base excitations.
4

Switchless Electrostatic Vibration Micro-Power Generators

Mahmoud, Mohamed A. E. January 2010 (has links)
Energy harvesting from the surrounding environment has become a hot topic in research as an alternative powering solution. The concept deals with scavenging, as well as, harvesting energy from the surrounding energy sources. Harvesting vibrations, through Micro-Power Generators (MPGs) , has drawn a lot of attention recently due to the reduction in the power requirement of the current sensors and integrated ciruits, and the abundance of ambient vibrations in many environments. Vibration Micro-Power generators (VMPGs) use one of three transduction mechanisms: piezoelectric, electromagnetic or electrostatic. Although electrostatic MPGs are the most compatible mechanism with ICs technology, many challenges face their optimal operation including low efficiency due to power electronics switching losses, the need for pre-charge, and the inability to operate in vibration environments with low frequencies and amplitudes. The objective of this thesis is to develop novel electrostatic micro-power generators using switchless architecture to achieve low cost, small footprint, self-sustained and optimal power generation in different vibration environments including low frequencies and amplitudes. The first electrostatic MPG uses an out-of-plane capacitive transducer. The new generator is sensitive enough to extract output power at very low base excitations. It is designed to use ready-made electret as a charging source and is therefore portable and self-sustained. Moreover, the new MPG can be configured as a wideband MPG in its impact mode of operation. A bandwidth of up to 9 Hz has been realized in this mode of operation. An improved version of the MPG is also presented that produces almost 1mW output power at a base excitation amplitude and frequency of 0.08g (RMS) and 86 Hz. Two nonlinear models developed for the free-flight and impact modes of operation of the MPG are presented to allow future analysis and optimization of the system. The second electrostatic MPG uses a novel interdigitated in-plane parallel plate electrostatic transducer. The new implementation can achieve 78% more output power than the original cited implementation. The MPG is fabricated using MEMS surface micromachining. The MPG introduces a new beam suspension system in which the source voltage is unlimited by the pull-in instability and low MPG center frequency can be realized. The MPG uses charged silicon nitride as a charging source. The MPG produces 65 mV at a base acceleration amplitude and frequency of 2g and 1.1 kHz. The prototype achieves 27% less resonance frequency with only one eight the size of the previous implementation. A third electrostatic MPG architecture is introduced. The new architecture eliminates the need for restoring force elements (springs) in the MPG. The architecture can realize arbitrarily low MPG center frequency. It is suitable for both rectilinear and cylindrical structures and can be used with different vibration energy transduction methods. A prototype is fabricated and tested to demonstrate the feasibility of this architecture. The center frequency of the prototype is found to be 2 Hz demonstrating low frequency operation. The nonlinear behavior of switchless (continuous) electrostatic MPGs is further studied for optimal power operation. A consistent approximate analytical solution is developed to describe the nonlinear behavior of switchless comb-finger electrostatic MPGs. The method of multiple scales is used to develop such model. The model was found to be valid for MPGs operating under tight electromechanical coupling conditions and for moderately-large base excitations.
5

New Formula for Conversion Efficiency of RF EH and its Wireless Applications

Chen, Y., Sabnis-Thomas, K., Abd-Alhameed, Raed 04 January 2016 (has links)
Yes / Existing works on energy harvesting wireless systems often assume a constant conversion efficiency for the energy harvester. In practice, the conversion efficiency often varies with the input power. In this work, based on a review of existing energy harvesters in the literature, a heuristic expression for the conversion efficiency as a function of the input power is derived by curve fitting. Using this function, two example energy harvesters are used to analyze the realistic performances of wireless relaying and wireless energy transfer. Numerical results show that the realistic performances of the wireless systems could be considerably different from what predicted by the existing analysis.
6

Towards Cost-Effective Crystalline Silicon Based Flexible Solar Cells: Integration Strategy by Rational Design of Materials, Process, and Devices

Bahabry, Rabab R. 30 November 2017 (has links)
The solar cells market has an annual growth of more than 30 percent over the past 15 years. At the same time, the cost of the solar modules diminished to meet both of the rapid global demand and the technological improvements. In particular for the crystalline silicon solar cells, the workhorse of this technology. The objective of this doctoral thesis is enhancing the efficiency of c-Si solar cells while exploring the cost reduction via innovative techniques. Contact metallization and ultra-flexible wafer based c-Si solar cells are the main areas under investigation. First, Silicon-based solar cells typically utilize screen printed Silver (Ag) metal contacts which affect the optimal electrical performance. To date, metal silicide-based ohmic contacts are occasionally used for the front contact grid lines. In this work, investigation of the microstructure and the electrical characteristics of nickel monosilicide (NiSi) ohmic contacts on the rear side of c-Si solar cells has been carried out. Significant enhancement in the fill factor leading to increasing the total power conversion efficiency is observed. Second, advanced classes of modern application require a new generation of versatile solar cells showcasing extreme mechanical resilience. However, silicon is a brittle material with a fracture strains <1%. Highly flexible Si-based solar cells are available in the form thin films which seem to be disadvantageous over thick Si solar cells due to the reduction of the optical absorption with less active Si material. Here, a complementary metal oxide semiconductor (CMOS) technology based integration strategy is designed where corrugation architecture to enable an ultra-flexible solar cell module from bulk mono-crystalline silicon solar wafer with 17% efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress as the screen-printed metals have fracture strain >15%. Furthermore, the integration of the cells is demonstrated on curved surfaces for a fully functional system. Finally, the developed flexing approach is used to fabricate three-dimensional dome-shaped cells to reduce the optical coupling losses without the use of the expensive solar tracking/tilting systems.
7

Projeto dinâmico de estruturas piezocompósitas laminadas (EPLA) utilizando o método de otimização topológica (MOT). / Dynamic design of laminated piezocomposite structures (LAPS) using the Topological Optimization Method (TOM).

Salas Varela, Ruben Andres 09 February 2017 (has links)
Materiais piezocompósitos laminados são compostos por camadas de material piezelétrico, metálico e compósito (matriz epóxi com fibras de carbono ou de vidro), que possibilitam obter vantagens em relação aos materiais piezelétricos convencionais, permitindo obter características superiores que não podem ser conseguidas pelos seus componentes de forma isolada como, por exemplo, maior flexibilidade e resistência mecânica ou menor peso. Sob esse enfoque, este trabalho tem por objetivo o desenvolvimento de Estruturas Piezocompósitas Laminadas (EPLA) que consistem basicamente em estruturas multicamadas, através do projeto da sua resposta transiente e harmônica visando aplicações dinâmicas. Entre as potenciais aplicações dessas estruturas, tem-se atuadores, motores, sonares e dispositivos de coleta de energia (\"energy harvester\"), sendo de muito interesse a melhora das suas características dinâmicas e o seu desempenho. O projeto dinâmico de uma EPLA é complexo, porém pode ser sistematizado utilizando o Método de Otimização Topológica (MOT). O MOT é um método baseado na distribuição de material num domínio de projeto fixo com o objetivo de extremizar uma função de custo sujeita às restrições inerentes do problema, combinando algoritmos de otimização e de elementos finitos. A formulação de MOT para o projeto dinâmico de EPLA pretende determinar tanto a topologia ótima dos materiais nas diferentes camadas quanto o sinal de polarização do material piezelétrico e o ângulo da fibra na camada compósita, tendo como finalidade a maximização da amplitude de vibração em pontos determinados (em atuadores) ou da geração de energia elétrica a partir de excitações mecânicas (em coletores de energia). Além disso, é formulado um problema combinando os enfoques harmônico e transiente com o intuito de customizar a resposta da EPLA, de modo que, o nível da resposta seja o mesmo perante diferentes tipos de onda de excitação (transdutores multi-entrada). O trabalho inclui as etapas de projeto, simulação, fabricação e caracterização de protótipos. / Laminated piezocomposite materials are composed by layers of piezoelectric, metal and composite material (epoxy matrix with carbon or glass fiber), which have advantages over conventional piezoelectric materials, because of their superior characteristics, which cannot be achieved by any of its components isolated, for example, more flexibility and strength and less weight. Under this approach, this work aims at the development of Laminated Piezocomposite Structures (LAPS) what primarily consist of multi-layer structures, through the transient and harmonic response design aiming at dynamic applications. Among the potential applications of these structures it can be cited actuators, motors, sonar devices and energy harvester, being of great interest the improvement of its dynamic characteristics and performance. The dynamic design of a LAPS is complex however it can be systematized by using the Topology Optimization Method (TOM). The TOM is a method based on the distribution of material in a fixed design domain with the aim of extremizing a cost function subject to constraints inherent to the problem by means of combining the optimization algorithms and the finite element method (FEM). The TOM formulation for the LAPS dynamic project aims to determine together the optimal topology of the materials for different layers, the polarization sign of the piezoelectric material and the fiber angle of the composite layer, in order to maximize the vibration amplitude at certain points (in actuators), or the generation of electrical energy from mechanical excitations (in energy harvesters). In addition, a TOM problem combining harmonic and transient approaches is formulated with the purpose of customizing EPLA response so that the response level is the same for different excitation waveforms (multi-entry transducers). The work includes design, simulation, manufacturing and characterization of prototypes.
8

Vibrational Energy Harvesting : Design, Performance and Scaling Analysis

Sriramdas, Rammohan January 2016 (has links) (PDF)
Low-power requirements of contemporary sensing technology attract research on alternate power sources that can replace batteries. Energy harvesters function as power sources for sensors and other low-power devices by transducing the ambient energy into usable electrical form. Energy harvesters absorbing the ambient vibrations that have potential to deliver uninterrupted power to sensing nodes installed in remote and vibration rich environments motivate the research in vibrational energy harvesting. Piezoelectric bimorphs have been demonstrating a pre-eminence in converting the mechanical energy in ambient vibrations into electrical energy. Improving the performance of these harvesters is pivotal as the energy in ambient vibrations is innately low. The present work is organized in three major sections: firstly, audit of the energy available in a vibrating source and design for effective transfer of the energy to harvesters, secondly, design of vibration energy harvesters with a focus to enhance their performance, and lastly, identification of key performance metrics influencing conversion efficiencies and scaling analysis for MEMS harvesters. Typical vibration levels in stationary installations such as surfaces of blowers and ducts, and in mobile platforms such as light and heavy transport vehicles, are determined by measuring the acceleration signal. The frequency content in the signal is determined from the Fast Fourier Transform. A method of determining the energy associated with the vibrating source and the associated power using power spectral density of the signal is proposed. Power requirements of typical sensing nodes are listed with an intent to determine the adequacy of energy harvesting. Effective transfer of energy from a given vibration source is addressed through the concept of dynamic vibration absorption, which is a passive technique for suppressing unintended vibrations. Optimal absorption of energy from a vibration source entails the determination of absorber parameters such as resonant frequency and damping. We propose an iterative method to obtain these parameters for a generic case of large number of identical vibration absorbers resembling harvesters by minimizing the total energy absorbed by the system. The proposed method is verified by analysing the response of a set of cantilever absorber beams placed on a vibrating cantilever plate. We find, using our method, the values of the absorber mass, resonant frequency and damping of the absorber at which significant amount of energy supplied to the system flows into the absorber, a scenario which is favourable for energy harvesting. We emphasize through our work that monitoring energies in the system and optimizing their flow is both rational and vital for designing multiple harvesters that absorb energy from a given vibration source optimally. Enhancing the performance of piezoelectric energy harvesters through a multilayer and, in particular, a multistep configuration is presented. Partial coverage of piezoelectric material in steps along the length of a cantilever beam results in a multistep piezoelectric energy harvester. We find that the power generated by a multistep beam is almost twice of that generated by a multilayer harvester made out of the same volume of polyviny-lidine fluoride (PVDF), further corroborated experimentally. Improvements observed in the power generated prove to be a boon for weakly coupled, low pro le, piezoelectric materials. Thus, in spite of the weak piezoelectric coupling observed in PVDF, its energy harvesting capability can be improved significantly by using it in a multistep piezoelectric beam configuration. Besides, the effect of piezoelectric step length and thickness in a piezoelectric unimorph harvester and performance metrics such as piezoelectric coupling factor and efficiency of conversion are presented. Modeling of a hybrid energy harvester composed of piezoelectric and electromagnetic mechanisms of energy conversion motivated by the need to determine the contribution of each domain to the power generated by the harvester is presented, particularly, when multiple domains exist in a single harvester. Two exclusive schemes of energy transduction are represented using equivalent circuits, which allow modeling any additional transduction scheme employed in the hybrid harvester with relative ease. Furthermore, a method of determining optimal loads in the respective domains using the equivalent circuit of the hybrid harvester is presented. Four different hybrid energy harvesters were fabricated and evaluated for their performance in comparison with that estimated from the proposed models. Additionally, scaling laws for hybrid energy harvesters are presented. The power developed by both piezoelectric and electromagnetic domains is observed to decrease with width and length cubed. Power indices and figures of merit in a hybrid harvester are proposed and are used to estimate the efficiencies of the four fabricated hybrid harvesters. The important design parameters for micro scale harvesting are identified by performing scaling analysis on MEMS piezoelectric harvesters. Performance of energy harvesters is directly related to the harvester attributes, viz., size, material, and end-mass. Depending on the contribution from each attribute, the power developed by MEMS harvesters can vary widely. A novel method of delineating the power developed by a harvester using five exclusive factors representing scaling, composition, inertia, material, and power (SCIMP) factors is presented. Although the proposed method can be extended to bi-morph and multilayer harvesters, in the present work, we elucidate it by applying it to a MEMS unimorph. We also present a unique coupling factor that ensures maximum power factor in a harvester. As any tiny increment in the power generated would considerably improve the power densities of MEMS harvesters, we focus on enhancing the power developed by maximizing each of the five exclusive factors irrespective of material and size. Furthermore, we demonstrate the competence of the proposed method by applying it on nine different MEMS harvesters reported in the literature. Considering the close match between the reported and predicted performance, we emphasize that monitoring the proposed factors is sufficient to attain the best performance from a harvester.
9

Projeto dinâmico de estruturas piezocompósitas laminadas (EPLA) utilizando o método de otimização topológica (MOT). / Dynamic design of laminated piezocomposite structures (LAPS) using the Topological Optimization Method (TOM).

Ruben Andres Salas Varela 09 February 2017 (has links)
Materiais piezocompósitos laminados são compostos por camadas de material piezelétrico, metálico e compósito (matriz epóxi com fibras de carbono ou de vidro), que possibilitam obter vantagens em relação aos materiais piezelétricos convencionais, permitindo obter características superiores que não podem ser conseguidas pelos seus componentes de forma isolada como, por exemplo, maior flexibilidade e resistência mecânica ou menor peso. Sob esse enfoque, este trabalho tem por objetivo o desenvolvimento de Estruturas Piezocompósitas Laminadas (EPLA) que consistem basicamente em estruturas multicamadas, através do projeto da sua resposta transiente e harmônica visando aplicações dinâmicas. Entre as potenciais aplicações dessas estruturas, tem-se atuadores, motores, sonares e dispositivos de coleta de energia (\"energy harvester\"), sendo de muito interesse a melhora das suas características dinâmicas e o seu desempenho. O projeto dinâmico de uma EPLA é complexo, porém pode ser sistematizado utilizando o Método de Otimização Topológica (MOT). O MOT é um método baseado na distribuição de material num domínio de projeto fixo com o objetivo de extremizar uma função de custo sujeita às restrições inerentes do problema, combinando algoritmos de otimização e de elementos finitos. A formulação de MOT para o projeto dinâmico de EPLA pretende determinar tanto a topologia ótima dos materiais nas diferentes camadas quanto o sinal de polarização do material piezelétrico e o ângulo da fibra na camada compósita, tendo como finalidade a maximização da amplitude de vibração em pontos determinados (em atuadores) ou da geração de energia elétrica a partir de excitações mecânicas (em coletores de energia). Além disso, é formulado um problema combinando os enfoques harmônico e transiente com o intuito de customizar a resposta da EPLA, de modo que, o nível da resposta seja o mesmo perante diferentes tipos de onda de excitação (transdutores multi-entrada). O trabalho inclui as etapas de projeto, simulação, fabricação e caracterização de protótipos. / Laminated piezocomposite materials are composed by layers of piezoelectric, metal and composite material (epoxy matrix with carbon or glass fiber), which have advantages over conventional piezoelectric materials, because of their superior characteristics, which cannot be achieved by any of its components isolated, for example, more flexibility and strength and less weight. Under this approach, this work aims at the development of Laminated Piezocomposite Structures (LAPS) what primarily consist of multi-layer structures, through the transient and harmonic response design aiming at dynamic applications. Among the potential applications of these structures it can be cited actuators, motors, sonar devices and energy harvester, being of great interest the improvement of its dynamic characteristics and performance. The dynamic design of a LAPS is complex however it can be systematized by using the Topology Optimization Method (TOM). The TOM is a method based on the distribution of material in a fixed design domain with the aim of extremizing a cost function subject to constraints inherent to the problem by means of combining the optimization algorithms and the finite element method (FEM). The TOM formulation for the LAPS dynamic project aims to determine together the optimal topology of the materials for different layers, the polarization sign of the piezoelectric material and the fiber angle of the composite layer, in order to maximize the vibration amplitude at certain points (in actuators), or the generation of electrical energy from mechanical excitations (in energy harvesters). In addition, a TOM problem combining harmonic and transient approaches is formulated with the purpose of customizing EPLA response so that the response level is the same for different excitation waveforms (multi-entry transducers). The work includes design, simulation, manufacturing and characterization of prototypes.
10

Large Area Electronics with Fluids : Field Effect on 2-D Fluid Ribbons for Desalination And Energy Harvesting

Kodali, Prakash January 2016 (has links) (PDF)
This work studies the influence of field effect on large area 2 dimensional ribbons of fluids. A fluid of choice is confined in the channel of a metal-insulator-channel-insulator-metal architecture and is subjected to constant (d.c) or alternating (a.c) fields (de-pending on the application) along with a pressure drive flow. A general fluid would be composed of molecules having certain polarizability and be a dispersion of non-ionic and ionic particulates. The field effect response under pressure driven flow for this fluid would result in electrophoresis, electro osmosis, dielectrophoresis, dipole-dipole interaction and inverse electro osmosis phenomena. Using some of these phenomena we study applications related to desalination and energy harvesting with saline water as the ex-ample fluid for the former case, and solution processed poly vinyldene fluoride (PVDF) for the latter case. The geometrical features of \large area" and the \ribbon shape" can be taken advantage of to influence the design and performance for both applications. With regards to desalination, it is shown via experiments and theoretical models that the presence of alternating electric fields aid in ion separation along the flow when the saline water is subjected to laminar flow. Moreover, the power consumption is low due to the presence of the insulator. An average of 30% ion removal efficiency and 15% throughput is observed in the systems fabricated. Both performance parameters are discussion can be improved upon with larger channel lengths. The \2-D ribbon" and alternating field effect aid in achieving this by patterning the randomly distributed ions in the bulk into a smooth sheet charge and then repelling this sheet charge back into the bulk. The electric field exhibited by this sheet charge helps trap more ion sheets near the interface, thereby converting a surface ion trapping phenomena (when d.c is used) to a bulk phenomena and thereby improving efficiency. With regards to energy harvesting, a solution of PVDF in methyl ethyl ketone and 1-methyl-2-pyrollidone is confined to the \2-D ribbon" geometry and subject to high d.c fields. This aids in combining the fabrication, patterning and poling process for PVDF into one setup. Since the shape of the ribbon is defined by the shape of the channel, the ribbons (straight or serrated) can be used to sense forces of various magnitudes. More importantly experiments and theoretical models are studied for energy harvesting. Since the ribbon geometry defines the resonant frequency, large PVDF ribbon can be used to harvest energy from low frequency vibrations. Experiments show that up to 60 microwatt power can be harvested at 200 Hz and is sufficient to supplement the power for ICs.

Page generated in 0.0836 seconds