• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 2
  • 2
  • Tagged with
  • 24
  • 14
  • 11
  • 11
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Role of CD26/DPPIV in the Homing and Engraftment of Long-Term CD34- Negative Hematopoietic Stem Cells

Allehaibi, Hanaa S. 04 1900 (has links)
CD26/DPPIV is a dipeptidyl peptidase that cleaves and destroys a variety of substrates such as the chemokine SDF-1α, a chemokine expressed along bone marrow endothelium, which is essential for the recruitment of hematopoietic stem cells (HSCs) via binding with its receptor CXCR4 to the bone marrow. Thus, CD26 is thought to interfere with the second step, chemokine/chemokine receptor interactions, of the cellular migration paradigm. To further study the role of CD26 in the migration of HSCs, we screened several human leukemic cell lines to find a model cell line that expresses active CD26 and discovered that the pro-monocytic cell line, U937 was optimal for this purpose. U937 cells were used to optimize a variety of assays including an CD26 activity assay and transwell migration assay with and without the use of a CD26 inhibitor, Diprotin A. Then, we isolated short-term and long-term HSCs from the bone marrow of C57BL/6N mice using a combination of surface markers and a fluorescence-activated cell sorter. The expression levels of Step 2’s homing molecules were measured by FACS in both fractions of HSCs. Interestingly, we detected differences in the expression of CD26 between these two populations that may help explain the inability of long-term HSCs to migrate to the bone marrow. Thus, through the use of a CD26 inhibitor the long-term HSCS migration to the bone marrow could be enhanced, leading to a prolonged and efficient stem cell engraftment activity. Such studies are could help develop protocols to improve stem cell engraftment for patients suffering from hematological diseases such as leukemia.
12

Impact of Storage and Cryoprotectants on the Function of Cord Blood Hematopoietic Stem Cells

Jahan, Suria 30 March 2020 (has links)
Cord blood (CB) has emerged as a significant source of hematopoietic stem cells (HSC) for transplantation. Large distances between collection and processing sites combined with staff availability can lead to long processing delays of CB unit (CBU). Standard agencies limit CBU storage at room temperature (RT) to a maximum of 48 hours from collection to freezing. Slow-engraftment and graft failure are major issues related to CB transplantation. I hypothesized that prolonged storage at RT reduces the engraftment activities of CBU due to the loss in HSC numbers. I set to test my hypothesis by performing serial and limiting-dilution transplantation assays in immunodeficient mice. My results showed that the engraftment activity of CBU was significantly perturbed by prolonged storage (>40 hours) at RT. In line with my hypothesis, the transplantation assays suggested that the engraftment deficit originates from loss in HSC numbers. My findings provide results for CB banks to make an informed decision on how long CBU can be stored at RT before processing. Conversely, CBU must be cryopreserved before use, and loss of function can occur due to osmotic shock and mechanical damage from uncontrolled ice-crystal growth (ice-recrystallization) during freezing and thawing. Current cyroprotectants like dimethyl-sulfoxide fail to inhibit ice-recrystallization. However, a novel class of small ice-recrystallization inhibitor (IRI) molecules (N-aryl-D-aldonamides) have been developed. I hypothesized that supplementation of cryopreservation solution with IRIs will improve the post-thaw viability and engraftment activity of CBU. Herein, I identified two IRIs (IRI 2 and IRI 6) that improved the post-thaw recovery of hematopoietic clonogenic and multipotent progenitors. Moreover, supplementation of CB graft with IRI 2 was beneficial to engraftment and had no negative impact on the differentiation and self-renewal activities of HSCs. Taken together, my results demonstrate for the first time that IRI may be beneficial to the engraftment activity of HSC graft and support further investigation.
13

Rational targeting of Cdc42 in hematopoietic stem cell mobilization and engraftment

Liu, Wei January 2011 (has links)
No description available.
14

Mechanism of Human Hematopoietic Stem Cell Loss During Ex Vivo Manipulation and Gene Transfer

Shrestha, Archana January 2016 (has links)
No description available.
15

Detection of porcine umbilical cord matrix stem cells in the intestine and other organs after oral and intraperitoneal administration to allogeneic recipients

Packthongsuk, Kreeson January 1900 (has links)
Doctor of Philosophy / Department of Animal Sciences and Industry / Duane Davis / Umbilical cords matrix stem cells (UCs) have been characterized most thoroughly in humans (HUCs) and are considered to have great promise for regenerative medicine and cell-based therapy. Although UCs were first identified in pigs the description of porcine UCs (PUCs) is limited. Here we reported some standard mesenchymal stem cell characteristics for PUCs. Development of knowledge about PUCs is useful because the pig is a valuable biomedical model for humans and the species is an important human food source. PUCs were isolated from Wharton’s jelly using an explant technique. They attached on the plastic and showed fibroblast-like morphology. Immunophenotype analysis showed they are positive for CD44, CD90 and CD105 and negative for CD31, CD45 and SLA-DR. Under specific in vitro conditions, PUCs were differentiated to adipocytes, chondrocytes and osteocytes. The growth curve of PUCs exhibited a lag phase, log phase and doubling time of 24, 60 and 13.8 hour respectively. Engraftment potential of allogeneic PUCs administered orally and intraperitoneally (IP) was evaluated. Newborn, 1-day, 1-week, 2-week and 3-week old pigs were administered a dose of fluorescently labeled PUCs (1.1x107 cells/kg body weight) and their tissue incorporation were evaluated using confocal microscopy with confirmation by PCR to detect SRY gene, the Y-chromosome gene of male PUCs in female recipients. One week after PUCs administration, they were found mostly in the gastrointestinal tract and abdominal organs after either oral or intraperitoneal transplantation. The intestinal mucosa layer around the base of villi and intestinal crypts was the main location. PUCs were also detected in thoracic organs, muscle and bone marrow. Additionally, PKH26-labeled fibroblasts labeled were detected in recipient intestine 1 week after IP injection. Donor cells were not found in blood at one week post transplantation. When recipients were sacrificed at 6 h after IP injection PKH26-labeled PUCs were found mostly in omentum and diaphragm by PCR. It is likely these are the primary sites for donor cells in the peritoneal cavity to enter the circulation. Fluorescent in situ hybridization (FISH), using an SRY probe and PCR, demonstrated the PUCs isolated from recipient intestines by enzymatic digestion. Therefore, transplanted PUCs were recovered from the intestinal mucosa and were viable and able to proliferate in vitro.
16

The Microvasculature of Endogenous and Transplanted Pancreatic Islets : Blood Perfusion, Oxygenation and Islet Endocrine Function

Olsson, Richard January 2006 (has links)
<p>Type 1 diabetes mellitus affects millions of people worldwide. Islet transplantation is a minimal invasive surgical procedure that restores euglycemia and halts the progression of diabetic complications. However, despite transplantation of islets from multiple donors most patients reverse to hyperglycemia within five years. New strategies to improve long-term outcome of islet transplantation are indispensable. This thesis studied differences in the microvasculature between endogenous and transplanted pancreatic islets, and investigated means to improve islet graft revascularization and function. Islet graft microvessels were similar to endogenous islets responsive to adenosine, angiotensin II and nitric oxide (NO). Recipient hyperglycemia induced a higher basal islet graft blood flow, which also was less dependent on NO than in normoglycemic recipients. Transplantation of freshly isolated instead of cultured islets improved graft revascularization, oxygenation and function. Pretreatment of islets with vascular endothelial growth factor decreased their expression of matrix metalloproteinase-9 (MMP-9) and impaired graft revascularization. Moreover, MMP-9 pretreatment <i>per se</i> improved graft revascularization. <i>In vivo</i>, 20-25% of all endogenous rat islets was low oxygenated (pO<sub>2</sub> <10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Interestingly, oxygenation was related to metabolism, since well oxygenated islets <i>in vivo</i> had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. In intraportally transplanted islets, the low oxygenated fraction of islets was markedly increased one day post-transplantation, and the oxygenation remained low following revascularization. In summary, these data suggest that a better revascularization of transplanted islets can improve graft function. Furthermore, the oxygenation and metabolism of endogenous islets is tightly regulated. This regulation seems to be disturbed following transplantation, which may contribute to long-term islet graft failure. </p>
17

The Microvasculature of Endogenous and Transplanted Pancreatic Islets : Blood Perfusion, Oxygenation and Islet Endocrine Function

Olsson, Richard January 2006 (has links)
Type 1 diabetes mellitus affects millions of people worldwide. Islet transplantation is a minimal invasive surgical procedure that restores euglycemia and halts the progression of diabetic complications. However, despite transplantation of islets from multiple donors most patients reverse to hyperglycemia within five years. New strategies to improve long-term outcome of islet transplantation are indispensable. This thesis studied differences in the microvasculature between endogenous and transplanted pancreatic islets, and investigated means to improve islet graft revascularization and function. Islet graft microvessels were similar to endogenous islets responsive to adenosine, angiotensin II and nitric oxide (NO). Recipient hyperglycemia induced a higher basal islet graft blood flow, which also was less dependent on NO than in normoglycemic recipients. Transplantation of freshly isolated instead of cultured islets improved graft revascularization, oxygenation and function. Pretreatment of islets with vascular endothelial growth factor decreased their expression of matrix metalloproteinase-9 (MMP-9) and impaired graft revascularization. Moreover, MMP-9 pretreatment per se improved graft revascularization. In vivo, 20-25% of all endogenous rat islets was low oxygenated (pO2 &lt;10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Interestingly, oxygenation was related to metabolism, since well oxygenated islets in vivo had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. In intraportally transplanted islets, the low oxygenated fraction of islets was markedly increased one day post-transplantation, and the oxygenation remained low following revascularization. In summary, these data suggest that a better revascularization of transplanted islets can improve graft function. Furthermore, the oxygenation and metabolism of endogenous islets is tightly regulated. This regulation seems to be disturbed following transplantation, which may contribute to long-term islet graft failure.
18

Adressage d’un gène à une tumeur via des cellules sanguines circulantes : contrôle de l’expression par hyperthermie locale et suivi par imagerie / Delivery of a bioluminescent transgene to a tumor via bone marrow engraftment : control and imaging of gene expression by non invasive local hyperthermia

Fortin, Pierre-Yves 16 September 2011 (has links)
Les thérapies géniques et cellulaires ouvrent de nouvelles perspectives pour le traitement de pathologies très diverses. Cependant, l’adressage à un organe cible, le contrôle non invasif de l’expression d’un transgène et le suivi par imagerie constituent encore des défis majeurs pour le développement de ces approches thérapeutiques. L’utilisation d’un vecteur cellulaire modifié génétiquement pour exprimer un transgène spécifique semble une solution prometteuse mais il convient aussi de restreindre l’expression du transgène à la région cible et de contrôler l’expression génique dans le temps. Pour le contrôle spatio temporel de l’expression, nous proposons une approche in vivo originale qui consiste à placer le gène thérapeutique sous le contrôle d’un promoteur thermo-inductible et à contrôler l’expression par une hyperthermie localisée induite à l’aide d’Ultrasons Focalisés guidés par Imagerie de Résonance Magnétique (IRM) de température (MRgHIFU).La stratégie expérimentale consiste à générer une souris chimère par greffe de moelle osseuse. La souris donneuse est une souris transgénique qui exprime le gène rapporteur bioluminescent de la luciférase Firefly (lucF) et le gène rapporteur fluorescent de la protéine mPlum sous le contrôle du promoteur thermosensible Hsp70a1b. La souris receveuse est une souris congénique prétraitée au Busilvex® pour créer une aplasie médullaire. Deux mois après, le pourcentage de greffe est déterminé par cytométrie de flux puis une tumeur sous-cutanée est induite sur la patte arrière gauche des souris par injection sous-cutanée de cellules tumorales (Carcinoma Mouse Tumor: CMT-93). Pendant la période de croissance tumorale (1 mois) les processus physiologiques conduisent au recrutement des cellules sanguines circulantes dans la zone péri-tumorale sans expression des transgènes. L’activation du promoteur Hsp70 est alors réalisée en créant une hyperthermie locale par MRgHIFU. L’IRM permet d’obtenir des cartes thermiques utilisées pour asservir un générateur d’ultrasons et pour contrôler le chauffage (45°C, 8 min, +/- 1°C). L’expression de la lucF est détectée in vivo 6 H après chauffage par imagerie de bioluminescence (BLI) alors que l’expression de la protéine mPlum est révélée 30 H après chauffage par imagerie de fluorescence par réflectance (FRI). A la suite de l’imagerie, les souris sont sacrifiées et une analyse histologique de la tumeur et des tissus périphériques est réalisée grâce à l’expression de la protéine mPlum. Les gènes rapporteurs lucF et mPlum sont exprimés après thermo-induction principalement par les macrophages de la souris chimère et l’expression intervient, comme attendu, dans les zones péri-tumorales chauffées. Parfois, l’expression des gènes rapporteurs est détectée dans des zones non ciblées et résulte de l’expression par les progéniteurs myéloïdes situés au niveau de la moelle osseuse en réponse à l’échauffement des os par les ultrasons.Nous avons ainsi pu démontrer in vivo la faisabilité de l’approche thérapeutique proposée et mis en évidence certaines limites de la procédure expérimentale essentiellement inhérentes à la taille du modèle animal et aux méthodes physiques utilisées pour l’activation in vivo du transgène.Nous proposons également une stratégie in vivo afin d’évaluer les performances de la tomographie moléculaire de fluorescence 3D pour suivre in vivo, le devenir d’une nano-émulsions fluorescentes (LNP) chez des souris porteuses de tumeurs intracrâniennes. / Gene and cell therapies offer new perspectives for the treatment of various pathologies. However, the efficiency of the delivery method to targeted organs, the control of gene expression and imaging gene expression remain major challenges for the development of these therapeutic approaches. The combination of a cell vector and a gene modification of this vector to express a specific transgene seems a promising strategy. But even addressed, it remains very difficult to restrict and control gene expression to the target region in time and space. That is why we investigate an in vivo strategy to deliver transgenes under the transcriptional control of a thermosensitive promoter and induce “on demand” expression by local hyperthermia using Magnetic Resonance guided High-Intensity Focused Ultrasound (MRgHIFU).This strategy consisted of engraftment of transgenic bone marrow cells (BMC) to create a chimera. The donor mouse was a transgenic mouse expressing the firefly luciferase (lucF) and the fluorescent reporter of the mPlum protein under the transcriptional control of the thermosensitve promoter Hsp70a1b. The mouse receiver was a congenic mouse pre-treated with Busilvex® to induce medular aplasia. Engraftment efficiency was measured 2 months later by flux cytometry, after which a tumor was implanted on the left leg of mice by subcutaneous injection carcinoma mouse tumor-93 cells. During tumor growth (1 month) circulating blood cells accumulated in and around the tumor as part of an inflammatory process without transgene expression. Local activation of the thermosensitive promoter Hsp70 was induced by hyperthermia using MRgHIFU. MRI temperature maps were used to provide feedback to an ultrasound generator and to control heating (45°C, 8 min, +/-1°C). The expression of lucF was detected by in vivo imaging of bioluminescence (BLI) 6 H after heating while mPlum expression was revealed by fluorescence that appeared 30 H post heating. After imaging, mice were sacrified and immunohistochemical analysis on tumors and tissues performed to identify mPlum expressing cells. Local heating of tumors induced expression of transgenes placed under control of the Hspa1b promoter in bone marrow-derived cells. Most of these cells remained in the vicinity of or within the tumor as both luciferase activity 6 H and mPlum fluorescence 30 H post-heating were concentrated at the tumor site. LucF and mPlum expression were caracterized in vivo and in vitro. In some cases, unexpected signal appear in non-heated specific areas corresponding to bone. Histology revealed the presence of mPlum in tumor macrophages and bone marrow myeloid progenitors. Having demonstrated the feasibility of this approach, our results also reveal some limits of these approaches that are inherent to the size of the animal model and the physical methods for in vivo activation of the transgene. We now propose an in vivo strategy to evaluate the performances of 3D fluorescent molecular tomography to follow in vivo the presence of intracerebral tumors in nude mice by using a fluorescent nano-emulsion (LNP).
19

The regulation of stem cell engraftment

Pepperell, Emma E. January 2013 (has links)
The engraftment of haemopoietic stem/progenitor cells (HSPCs) from umbilical cord blood (UCB) into adult recipients, although advantageous in terms of sourcing units, the decreased need to match donor and recipient and reduced risk of graft versus host disease (GvHD), is delayed compared to grafts using HSPCs from mobilised peripheral blood (MPB) or bone marrow (BM). One reason for this is the limited number of HSPCs (CD34+/CD133+ cells) in a unit of UCB compared to MPB or BM. The CXCR4-CXCL12 axis is widely recognised as a key player in the bone marrow homing, retention, and engraftment of HSPCs. The aim of this thesis was to investigate whether the engraftment of HSPCs from UCB into the bone marrow could be improved. Firstly, a novel in vitro 3D time-lapse chemotaxis assay to assess the homing capacity of human UCB CD133+ HSPCs, towards the chemokine CXCL12 was developed. One advantage of this assay was that it distinguished cell chemotaxis from chemokinesis and allowed these parameters to be quantified. Human UCB CD133+ HSPC chemotaxis towards CXCL12 was inhibited by the CXCR4 antagonist, AMD3100. Importantly, the presence of CXCL12 or AMD3100 had no affect on cell chemokinesis. To complement the in vitro chemotaxis assay, a short term in vivo homing assay in NSG mice was successfully established. The effect of siRNA silencing of the CXCR4 co-receptor, CD164, which is also expressed on CD133+ HSPCs, on cell migratory and homing ability was investigated. CD164 knock-down using siRNA in human UCB CD133+ HSPCs did not demonstrate an effect on homing to NSG bone marrow in vivo or chemotaxis to CXCL12 in vitro. However, homing to NSG mouse spleen was significantly reduced in cells silenced for CD164. Following this, an 8 day HSPC expansion system using nanofibre scaffolds (Nanex) and differing cytokines was investigated. These serum and feeder free conditions yielded a significant expansion of cells that retained CD133+CD34+ expression and their in vitro chemotactic ability to CXCL12. Time constraints did not permit the engrafting ability of these cells to be analysed in an in vivo HSC reconstitution assay that was initiated. However these studies will provide the basis to support future related research in this laboratory.
20

Implantation-Site Dependent Differences in Engraftment and Function of Transplanted Pancreatic Islets

Lau, Joey January 2008 (has links)
<p>Transplanting pancreatic islets into the liver through the portal vein is currently the most common procedure in clinical islet transplantations for treating patients with brittle type 1 diabetes. However, most islet grafts fail within a 5-year period necessitating retransplantation. The vascular connections are disrupted at islet isolation and implanted islets depend on diffusion of oxygen and nutrients in the immediate posttransplantation period. Rapid and efficient revascularization is of utmost importance for the survival and long-term function of transplanted islets. </p><p>In this thesis, the influence of the implantation microenvironment for islet engraftment and function was studied. Islets were transplanted into the liver, the renal subcapsular site or the pancreas. Islets implanted into the liver contained fewer glucagon-positive cells than islets implanted to the kidney and endogenous islets. Intraportally transplanted islets responded with insulin and glucagon release to secretagogues, but only when stimulated through the hepatic artery. Thus, the intrahepatic grafts were selectively revascularized from the hepatic artery. The vascular density in human islets transplanted into the liver of athymic mice was markedly lower when compared to human islets grafted to the kidney. Islets implanted into their physiological environment, the pancreas, were markedly better revascularized. Insulin content, glucose-stimulated insulin release, (pro)insulin biosynthesis and glucose oxidation rate were markedly decreased in transplanted islets retrieved from the liver, both when compared to endogenous and transplanted islets retrieved from the pancreas. Only minor changes in metabolic functions were observed in islets implanted into the pancreas when compared to endogenous islets. </p><p>The present findings demonstrate that the microenvironment has a major impact on the engraftment of transplanted islets. Elucidating the beneficial factors that promote engraftment would improve the survival and long-term function of transplanted islets. Ultimately, islet transplantation may be provided to an increased number of patients with type 1 diabetes.</p>

Page generated in 0.1669 seconds