• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 672
  • 107
  • 73
  • 63
  • 27
  • 25
  • 20
  • 14
  • 9
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1287
  • 256
  • 219
  • 179
  • 172
  • 152
  • 144
  • 130
  • 118
  • 103
  • 89
  • 87
  • 86
  • 85
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

EDDE : a framework to explore, design, develop and evaluate technology-enhanced instruction for construction

Nguyen, Thuy Thi Thu, Ph. D. 07 February 2011 (has links)
Technology-enhanced instruction has a great potential to support the learning process. However, the engaging power of technology can become a distracting factor if it is not deployed properly. Unfortunately, the current literature in instructional design and user interface design is broad and not easily accessible by construction faculty. This dissertation presents a framework to guide the development of technology-assisted instruction for the classroom. The framework developed is called EDDE which stands for four conceptual steps involved in the creation of a technology-supported teaching tool: Explore, Design, Develop, and Evaluate. EDDE contains a novel synthesis of the literature in instructional design and user interface design as well as survey data of student subject matter knowledge and information technology background. A computerized tool called EDDEaid makes accessible the large store of knowledge supporting EDDE. Assessment of EDDEaid is presented with evaluation results from nine university faculty that teach construction subjects as well as through critique of and changes to an existing interactive learning tool. EDDE and EDDEaid are found to contribute to the body of knowledge regarding the deployment of technology-enhanced instruction and provide support to construction faculty developing learning tools. / text
142

A polymer hydrolysis model and its application in chemical EOR process simulation

Lee, Ahra 21 February 2011 (has links)
Polymer flooding is a commercial enhanced oil recovery (EOR) method used to increase the sweep efficiency of water floods. Hydrolyzed polyacrylamide (HPAM), a synthetic commercial polymer, is widely used in commercial polymer floods and it is also used for mobility control of chemical floods using surfactants such as surfactant-polymer flooding and alkaline-surfactant-polymer flooding. The increase in the degree of hydrolysis of HPAM at elevated temperature or pH with time affects the polymer solution viscosity and its adsorption on rock surfaces. A polymer hydrolysis model based on published laboratory data was implemented in UTCHEM, a chemical EOR simulator, in order to assess the effect of hydrolysis on reservoir performance. Both 1D and 3D simulations were performed to validate the implementation of the model. The simulation results are consistent with the laboratory observations that show an increase in polymer solution viscosity as hydrolysis progresses. The numerical results indicate that hydrolysis occurs very rapidly and impacts the near wellbore region polymer injectivity. / text
143

Deposition of epitaxial Si/Si-Ge/Ge and novel high-K gate dielectrics using remote plasma chemical vapor deposition

Chen, Xiao, 1972- 29 June 2011 (has links)
Not available / text
144

Selection and evaluation of surfactants for field pilots

Dean, Robert Matthew 12 July 2011 (has links)
Chemical flooding has been studied for 50 years. However, never have the conditions encouraging its growth been as good as right now. Those conditions being new, improved technology and oil prices high enough to make implementation economical. The objective of this work was to develop economical, robust chemical formulations and processes that recover oil in field pilots when properly implemented. This experimental study goes through the process of testing surfactants to achieve optimal phase behavior, coreflooding with the best chemical formulations, improving the formulation and testing it in more corefloods, and then finally recommending the formulation to be tested in a field pilot. The target reservoir contains a light (34° API, 10 cP), non-reactive oil at about 22° C. The formation is a moderate permeability (50 - 300 mD) sandstone with a high clay content (up to 13%). Different surfactants and surfactant mixtures were tested with the oil including alkyl benzene sulfonates (ABS), Guerbet alcohol sulfates (GAS), alkyl propoxy sulfates, and internal olefin sulfonates (IOS). The best formulation contained 0.75% TDA -13PO-SO₄, 0.25% C₂₀₋₂₄ IOS, 0.75% isobutanol (IBA), 1% Na₂CO₃, all which are mixed in a softened fresh water from a supply well. Corefloods recovered 93% of residual oil from reservoir cores. Core flood experiments were also done with the alkali sodium carbonate to measure the effluent pH in a Bentheimer sandstone core with a cation exchange capacity (CEC) of 2 meq/100g. Floods at frontal velocities of 100, 10, and 0.33 ft/D were performed with 0.3 pore volume slugs of 0.7% Na₂CO₃ at 86° C. The effluent was analyzed for ions and pH breakthrough. It was found that the pH breakthrough occurred before surfactant breakthrough would be expected as desired although the pH was lower at a frontal velocity of 0.33 ft/D than at the higher velocities. The Na₂CO₃ consumption was 0.244, 0.238, and 0.207 meq/100 g rock at velocities of 100, 10, and 0.33 ft/D, respectively. In addition, a no-alkaline formulation consisting of a new large hydrophobe ether carboxylate surfactant mixed with an internal olefin sulfonate was tested on an active oil and it successfully recovered 99% of the waterflood remaining oil from an Ottawa sand pack with no salinity gradient and no alkali. The final residual oil saturation after the chemical flood (S[subscript orc]) was only 0.005 / text
145

Co-optimization of CO₂ sequestration and enhanced oil recovery and co-optimization of CO₂ sequestration and methane recovery in geopressured aquifers

Bender, Serdar 05 October 2011 (has links)
In this study, the co-optimization of carbon dioxide sequestration and enhanced oil recovery and the co-optimization of carbon dioxide sequestration and methane recovery studies were discussed. Carbon dioxide emissions in the atmosphere are one of the reasons of global warming and can be decreased by capturing and storing carbon dioxide. Our aim in this study is to maximize the amount of carbon dioxide sequestered to decrease carbon dioxide emissions in the atmosphere and maximize the oil or methane recovery to increase profit or to make a project profitable. Experimental design and response surface methodology are used to co-optimize the carbon dioxide sequestration and enhanced oil recovery and carbon dioxide sequestration and methane recovery. At the end of this study, under which circumstances these projects are profitable and under which circumstances carbon dioxide sequestration can be maximized, are given. / text
146

On an inverse-source problem for elastic wave-based enhanced oil recovery

Jeong, Chanseok,1981- 13 October 2011 (has links)
Despite bold steps taken worldwide for the replacement or the reduction of the world’s dependence on fossil fuels, economic and societal realities suggest that a transition to alternative energy forms will be, at best, gradual. It also appears that exploration for new reserves is becoming increasingly more difficult both from a technical and an economic point of view, despite the advent of new technologies. These trends place renewed emphasis on maximizing oil recovery from known fields. In this sense, low-cost and reliable enhanced oil recovery (EOR) methods have a strong role to play. The goal of this dissertation is to explore, using computational simulations, the feasibility of the, so-called, seismic or elastic-wave EOR method, and to provide the mathematical/computational framework under which the method can be systematically assessed, and its feasibility evaluated, on a reservoir-specific basis. A central question is whether elastic waves can generate sufficient motion to increase oil mobility in previously bypassed reservoir zones, and thus lead to increased production rates, and to the recovery of otherwise unexploited oil. To address the many questions surrounding the feasibility of the elastic-wave EOR method, we formulate an inverse source problem, whereby we seek to determine the excitations (wave sources) one needs to prescribe in order to induce an a priori selected maximization mobility outcome to a previously well-characterized reservoir. In the industry’s parlance, we attempt to address questions of the form: how does one shake a reservoir?, or what is the “resonance” frequency of a reservoir?. We discuss first the case of wellbore wave sources, but conclude that surface sources have a better chance of focusing energy to a given reservoir. We, then, discuss a partial-differential-equation-constrained optimization approach for resolving the inverse source problem associated with surface sources, and present a numerical algorithm that robustly provides the necessary excitations that maximize a mobility metric in the reservoir. To this end, we form a Lagrangian encompassing the maximization goal and the underlying physics of the problem, expressed through the side imposition of the governing partial differential equations. We seek to satisfy the first-order optimality conditions, whose vanishing gives rise to a systematic process that, in turn, leads to the prescription of the wave source signals. We explore different (indirect) mobility metrics (kinetic energy or acceleration field maximization), and report numerical experiments under three different settings: (a) targeted formations within one-dimensional multi-layered elastic solids system of semi-infinite extent; (b) targeted formations embedded in a two-dimensional semi-infinite heterogeneous elastic solid medium; and (c) targeted poroelastic formations embedded within elastic heterogeneous surroundings in one dimension. The numerical experiments, employing hypothetical subsurface formation models subjected to, initially unknown, ground surface wave sources, demonstrate that the numerical optimizer leads robustly to optimal loading signals and the illumination of the target formations. Thus, we demonstrate that the theoretical framework for the elastic wave EOR method developed in this dissertation can systematically address the application of the method on a reservoir-specific basis. From an application point of view and based on the numerical experiments reported herein, for shallow reservoirs there is strong promise for increased production. The case of deeper reservoirs can only be addressed with further research that builds on the findings of this work, as we report in the last chapter. / text
147

Enhanced amyloid fibril formation of insulin in contact with catalytic hydrophobic surfaces

Salagic, Belma January 2007 (has links)
The important protein hormone insulin, responsible for different kind of functions in our body but mainly storage of nutrients, has for a long time been used for treatment of diabetic patients. This important protein is both physically and chemically unstable. Especially during production where the insulin protein is exposed to unnatural environmental conditions such as acidic pH has this been causing problems since huge volumes of the product go to waste. In the human body the environment for the protein is tolerable with normal body temperature and the right pH, but when the protein is commercially synthesised the environmental conditions are not ultimate. What happens during these unfavourable conditions is that the insulin starts to fibrillate. Meaning that linear, biologically inactive aggregates are formed. If then under these kinds of conditions such as high temperature and acidic pH, the insulin comes in contact with hydrophobic surfaces then the fibrillation of the protein goes even faster. In the following experiment I am going to investigate if the experiments and conclusions done before, where different kinds of additives to insulin solutions have been used to enhance the amyloid fibrillation of insulin, are as effective as it has been proposed and I am going to prove that the presence of hydrophobic surfaces, such as coated silicon surfaces or glass and addition of preformed fibrils, so called seeds, increase amyloid fibrillation of the insulin protein under certain conditions, in comparison with the normal fibrillation under the same conditions.
148

Uplink TDMA Potential in WCDMA Systems

Persson, Markus January 2008 (has links)
The evolvement of the uplink in the third generation mobile telecommunication system is an ongoing process. The Enhanced Uplink (EUL) concept is being developed to meet the expected need from more advanced services, like video streaming and mobile broadband. One idea for further improvement in the EUL concept is to introduce Time Division Multiple Access (TDMA), which is studied in this master thesis. The master thesis assignment is to study the consequences of introducing TDMA in EUL. The goal has been to identify the gains and problems, and how they can be handled. A derived theoretical framework and system simulations, using a radio network simulator, are used. The overall conclusion is that there is a potentially large gain with an introduction of TDMA in EUL. Simulations in favorable conditions have shown that the system throughput can increase by 100% when there are only User Equipment (UE) that are using EUL in the system and by 50% when there is a mix of speech and EUL UE’s. When using TDMA the uplink load also shows improvements, the mean is generally higher but the variance is generally smaller. Due to major differences in experienced interference between passive and active UE’s, the signal quality will vary a lot. The big variation in signal quality is identified as the main problem with introducing TDMA in EUL. It is shown that this problem can generate extreme high uplink load, which have a negative impact both on the resource efficiency and the coverage.
149

Synthesis, characterization and self-assembly of gold nanorods an surface-enhanced Raman studies

Nikoobakht, Babak 08 1900 (has links)
No description available.
150

Preparation of high density particulate preforms and their consolidation by the thermal gradient-forced flow diamond CVI process

Lee, Jong-Heon 12 1900 (has links)
No description available.

Page generated in 0.0464 seconds