Spelling suggestions: "subject:"enhanced."" "subject:"inhanced.""
391 |
Petrography of the Cook-Mccormick core, Eutaw Formation, Heidelberg field Mississippi and relationship to Microbial Permeability Profile ModificationCollins, Krystal Marie, January 2008 (has links)
Thesis (M.S.)--Mississippi State University. Department of Geosciences. / Title from title screen. Includes bibliographical references.
|
392 |
Rise Over Thermal Estimation Algorithm Optimization and Implementation / Rise Over Thermal Estimation Algorithm Optimization and ImplementationIrshad, Saba, Nepal, Purna Chandra January 2013 (has links)
The uplink load for the scheduling of Enhanced-Uplink (E-UL) channels determine the achievable data rate for Wideband Code Division Multiple Access (WCDMA) systems, therefore its accurate measurement carries a prime significance. The uplink load also known as Rise-over-Thermal (RoT), which is the quotient of the Received Total Wideband Power (RTWP) and the Thermal Noise Power floor. It is a major parameter which is calculated at each Transmission Time Interval (TTI) for maintaining cell coverage and stability. The RoT algorithm for evaluation of uplink load is considered as a complex and resource demanding among several Radio Resource Management (RRM) algorithms running in a radio system. The main focus of this thesis is to study RoT algorithm presently deployed in radio units and its possible optimization by reducing complexity of the algorithm in terms of memory usage and processing power. The calculation of RoT comprises three main blocks a Kalman filter, a noise floor estimator and the RoT computation. After analyzing the complexity of each block it has been established that the noise floor estimator block is consuming most of the processing power producing peak processor load since it involves many complex floating point calculations. However, the other blocks do not affect the processing load significantly. It was also observed that some block updates can be reduced in order to decrease the average load on the processor. Three techniques are proposed for reducing the complexity of the RoT algorithm, two for the reduction of peak load and one for the reduction of average load. For reducing the peak load, an interpolation approach is used instead of performing transcendental mathematical calculations. Also, the calculations involving noise floor estimation are extended over several TTIs by keeping in view that the estimation is not time critical. For the reduction of average load, the update rate for the Kalman Filter block is reduced. Based on these optimization steps, a modified algorithm for RoT computation with reduced complexity is proposed. The proposed changes are tested by means of MATLAB simulations demonstrating the improved performance with consistency in the output results. Finally, an arithmetic operation count is done using the hardware manual of Power PC (PPC405) used in Platform 4, which gives a rough estimate of decrease in the percentage of calculations after optimization. / saabairshad@gmail.com
|
393 |
Evaluation of Deep Geologic Units in Florida for Potential Use in Carbon Dioxide SequestrationRoberts-Ashby, Tina 10 November 2010 (has links)
Concerns about elevated atmospheric carbon dioxide (CO 2
) and the effect on
global climate have created proposals for the reduction of carbon emissions from large
stationary sources, such as power plants. Carbon dioxide capture and sequestration
(CCS) in deep geologic units is being considered by Florida electric-utilities. Carbon
dioxide-enhanced oil recovery (CO 2
-EOR) is a form of CCS that could offset some of the
costs associated with geologic sequestration. Two potential reservoirs for geologic
sequestration were evaluated in south-central and southern Florida: the Paleocene
Cedar Keys Formation/Upper Cretaceous Lawson Formation (CKLIZ) and the Lower
Cretaceous Sunniland Formation along the Sunniland Trend (Trend). The Trend is a
slightly arcuate band in southwest Florida that is about 233 kilometers long and 32
kilometers wide, and contains oil plays within the Sunniland Formation at depths starting
around 3,414 meters below land surface, which are confined to mound-like structures
made of coarse fossil fragments, mostly rudistids. The Trend commercial oil fields of the
South Florida Basin have an average porosity of 16% within the oil-producing Sunniland
Formation, and collectively have an estimated storage capacity of around 26 million tons
of CO 2
. The Sunniland Formation throughout the entire Trend has an average porosity
of 14% and an estimated storage capacity of about 1.2 billion tons of CO 2 (BtCO2
). The
CKLIZ has an average porosity of 23% and an estimated storage capacity of
approximately 79 BtCO 2
. Porous intervals within the CKLIZ and Sunniland Formation
are laterally homogeneous, and low-permeability layers throughout the units provide
significant vertical heterogeneity. The CKLIZ and Sunniland Formation are considered
potentially suitable for CCS operations because of their geographic locations,
appropriate depths, high porosities, estimated storage capacities, and potentiallyeffective
seals. The Trend oil fields are suitable for CO
2
-EOR in the Sunniland
Formation due to appropriate injected-CO
2
density, uniform intergranular porosity,
suitable API density of formation-oil, sufficient production zones, and adequate
remaining oil-in-place following secondary recovery. In addition to these in-depth
investigations of the CKLIZ and Sunniland Formation, a more-cursory assessment of
deep geologic units throughout the state of Florida, which includes rocks of Paleocene
and Upper Cretaceous age through to rocks of Ordovician age, shows additional units in
Florida that may be suitable for CO
2
-EOR and CCS operations. Furthermore, this study
shows that deep geologic units throughout Florida potentially have the capacity to
sequester billions of tons of CO
2
for hundreds of fossil-fuel-fired power plants. Geologic
sequestration has not yet been conducted in Florida, and its implementation could prove
useful to Florida utility companies, as well as to other energy-utilities in the southeastern
United States.
|
394 |
Detection of magneto-activated water/oil interfaces containing nanoparticlesRyoo, SeungYup 31 January 2012 (has links)
Accurate, non-invasive determination of multiphase fluids distribution in reservoir rock can greatly help the evaluation and monitoring of oil reservoirs. This laboratory thesis research, carried but utilizing the biomedical engineering concepts and measurement facilities, is an important step in developing a novel magnetic field-based oil detection method.
When paramagnetic nanoparticles are either adsorbed oil/water interface or dispersed in a fluid phase in reservoir rock pores, and exposed to external magnetic field, the resultant particle movements displace the interface. Interfacial tension acts as a restoring force, leading to interfacial fluctuation and a pressure (sound) save. As the first step, the motion of the interface between a suspension of paramagnetic nanoparticles and a non-magnetized fluid (placed in a cylindrical dish) is measured by phase-sensitive optical coherence tomography (PS-OCT). Experiments were carried out with a range of iron-oxide nanoparticles that were synthesized and surface-coated by our Chemical Engineering collaborators. The numerical method was improved to be volume conserving, and extended to 3D, for more quantitative matching. The measurements of interfacial motion by PS-OCT confirm theoretical predictions of the frequency doubling and importance of material properties, such as the particle size, for the interface displacements. The relative densities of the fluid phase(air/aqueous and dodecane/aqueous) strongly affect the interfacial displacement.
Next, the acoustic responses to the external magnetic oscillation, from the rock samples into which different aqueous dispersions of nanoparticles were injected, were measured in terms of the magnetic frequency, nanoparticle concentration, and other process parameters.
Subsequently, the PS-OCT displacements in response to the external magnetic oscillation, from the rock samples into which different aqueous dispersions of nanoparticles were injected, were also measured in terms of the magnetic frequency, nanoparticle concentration, and other process parameters.
Conclusions and the recommendations for further study are then given. / text
|
395 |
Potential for non-thermal cost-effective chemical augmented waterflood for producing viscous oilsXu, Haomin 04 March 2013 (has links)
Chemical enhanced oil recovery has regained its attention because of high oil price and the depletion of conventional oil reservoirs. This process is more complex than the primary and secondary recovery flooding and requires detailed engineering design for a successful field-scale application.
An effective alkaline/co-solvent/polymer (ACP) formulation was developed and corefloods were performed for a cost efficient alternative to alkaline/surfactant/polymer floods by the research team at the department of Petroleum and Geosystems Engineering at The University of Texas at Austin. The alkali agent reacts with the acidic components of heavy oil (i.e. 170 cp in-situ viscosities) to form in-situ natural soap to significantly reduce the interfacial tension, which allows producing residual oil not contacted by waterflood or polymer flood alone. Polymer provides mobility control to drive chemical slug and oil bank. The cosolvent added to the chemical slug helps to improve the compatibility between in-situ soap and polymer and to reduce microemulsion viscosity. An impressive recovery of 70% of the waterflood residual oil saturation was achieved where the remaining oil saturation after the ACP flood was reduced to only 13.5%. The results were promising with very low chemical usage for injection. The UTCHEM chemical flooding reservoir simulator was used to model the coreflood experiments to obtain parameters for pilot scale simulations. Geological model was based on unconsolidated reservoir sand with multiple seven spot well patterns.
However, facility capacity and field logistics, reservoir heterogeneity as well as mixing and dispersion effects might prevent coreflood design at laboratory from large scale implementation. Field-scale sensitivity studies were conducted to optimize the design under uncertainties. The influences of chemical mass, polymer pre-flush, well constraints, and well spacing on ultimate oil recovery were closely investigated. This research emphasized the importance of good mobility control on project economics. The in-situ soap generated from alkali-naphthenic acid reaction not only mobilizes residual oil to increase oil recovery, but also enhances water relative permeability and increases injectivity. It was also demonstrated that a closer well spacing significantly increases the oil recovery because of greater volumetric sweep efficiency.
This thesis presents the simulation and modeling results of an ACP process for a viscous oil in high permeability sandstone reservoir at both coreflood and pilot scales. / text
|
396 |
Development of a novel EOR surfactant and design of an alkaline/surfactant/polymer field pilotGao, Bo 11 March 2014 (has links)
Surfactant related recovery processes are of increasing interest and importance because of high oil prices and the urge to meet energy demand. High oil prices and the accompanying revival of EOR operations have provided academia and industry with great opportunities to test alkaline surfactant polymer (ASP) methods on a field scale and to develop novel surfactant systems that can improve the performance of such EOR processes. This dissertation intends to discuss both opportunities through two unique projects, the development of novel surfactants for EOR applications and the design for an alkaline/surfactant/polymer (ASP) field pilot. In Section I of this dissertation, a novel series of anionic Gemini surfactants are carefully synthesized and systematically investigated. The remarkable abilities of Gemini surfactants to influence oil-water interfaces and aqueous solution properties are fully demonstrated. These surfactants are shown to have great potential for application in EOR processes. A wide range of Gemini structures (C₁₄ to C₂₄ chain length, -C2- and -C4- spacers, sulfate and carboxylate head groups) was synthesized and shown to have high aqueous solubility, with Krafft points below 20°C. The critical micelle concentrations (CMC) for these new molecules are measured to be orders of magnitude lower than their conventional counterparts. The significantly more negative Gibbs free energy for Gemini surfactant drives the micellization process and results in ultralow CMC. An adsorption study of Gemini surfactants at air-water and solid-water interfaces shows their superior surface activity from tighter molecular packing, and attractive characteristics of low adsorption loss at the solid surface. All anionic Gemini surfactants synthesized have an extraordinary tolerance to salinity and/or hardness. No phase separation or precipitation occurs in the aqueous stability tests, even in the presence of extremely high concentrations of mono- and/or di-valent ions. Moreover, ultra-low IFT values are reached under these conditions for Type I microemulsion systems, at very low surfactant concentrations. The stronger molecular interaction between the Gemini and conventional surfactants offers synergy that promotes aqueous stability and interfacial activity. Gemini molecules with short spacers are capable of giving rise to high viscosities at fairly low concentrations. The rheological behavior can be explained by changes in the micellar structure. A molecular thermodynamic model is developed to study anionic Gemini surfactants aggregation behavior in solution. The model takes into account of the head group-counter-ion binding effect and utilizes two simplified solutions to the Poisson-Boltzmann equation. It properly predicts the CMC of the surfactants synthesized and can be easily expanded to investigate other factors of interest in the micellization process. Section II of this dissertation studies chemical formulation design and implementation for an oilfield where an alkaline/surfactant/polymer (ASP) pilot is being carried out. A four-step systematic design approach, composed of a) process and material selection; b) formulation optimization; c) coreflood validation; 4) lab-scale simulation, was successfully implemented and could be easily transferred to other EOR projects. The optimal chemical formulation recovered over 90% residual oil from Berea coreflood. Lab-scale simulation model accurately history matches the coreflood experiment and sets the foundation for pilot-scale numerical study. Different operating strategies are investigated using a pilot-scale model, as well as the sensitivities of project economics to various design parameters. A field execution plan is proposed based on the results of the simulation study. A surface facility conceptual design is put together based on the practical needs and conditions in the field. Key lessons learned throughout the project are summarized and are invaluable for planning and designing future pilot floods. / text
|
397 |
Using analytical and numerical modeling to assess deep groundwater monitoring parameters at carbon capture, utilization, and storage sitesPorse, Sean Laurids 09 April 2014 (has links)
Carbon Dioxide (CO₂) Enhanced Oil Recovery (EOR) is becoming an important bridge to commercialize geologic sequestration (GS) in order to help reduce anthropogenic CO₂ emissions. Current U.S. environmental regulations require operators to monitor operational and groundwater aquifer changes within permitted bounds, depending on the injection activity type. We view one goal of monitoring as maximizing the chances of detecting adverse fluid migration signals into overlying aquifers. To maximize these chances, it is important to: (1) understand the limitations of monitoring pressure versus geochemistry in deep aquifers (i.e., >450 m) using analytical and numerical models, (2) conduct sensitivity analyses of specific model parameters to support monitoring design conclusions, and (3) compare the breakthrough time (in years) for pressure and geochemistry signals. Pressure response was assessed using an analytical model, derived from Darcy's law, which solves for diffusivity in radial coordinates and the fluid migration rate. Aqueous geochemistry response was assessed using the numerical, single-phase, reactive solute transport program PHAST that solves the advection-reaction-dispersion equation for 2-D transport. The conceptual modeling domain for both approaches included a fault that allows vertical fluid migration and one monitoring well, completed through a series of alternating confining units and distinct (brine) aquifers overlying a depleted oil reservoir, as observed in the Texas Gulf Coast, USA. Physical and operational data, including lithology, formation hydraulic parameters, and water chemistry obtained from field samples were used as input data. Uncertainty evaluation was conducted with a Monte Carlo approach by sampling the fault width (normal distribution) via Latin Hypercube and the hydraulic conductivity of each formation from a beta distribution of field data. Each model ran for 100 realizations over a 100 year modeling period. Monitoring well location was varied spatially and vertically with respect to the fault to assess arrival times of pressure signals and changes in geochemical parameters. Results indicate that the pressure-based, subsurface monitoring system provided higher probabilities of fluid migration detection in all candidate monitoring formations, especially those closest (i.e., 1300 m depth) to the possible fluid migration source. For aqueous geochemistry monitoring, formations with higher permeabilities (i.e., greater than 4 x 10⁻¹³ m²) provided better spatial distributions of chemical changes, but these changes never preceded pressure signal breakthrough, and in some cases were delayed by decades when compared to pressure. Differences in signal breakthrough indicate that pressure monitoring is a better choice for early migration signal detection. However, both pressure and geochemical parameters should be considered as part of an integrated monitoring program on a site-specific basis, depending on regulatory requirements for longer term (i.e., >50 years) monitoring. By assessing the probability of fluid migration detection using these monitoring techniques at this field site, it may be possible to extrapolate the results (or observations) to other CCUS fields with different geological environments. / text
|
398 |
Modeling and simulation studies of foam processes in improved oil recovery and acid-diversionsCheng, Liang, 1971- 06 July 2015 (has links)
Not available / text
|
399 |
Enhanced Query Data Recorder (EQDR) - A Next Generation Network Recorder Built Around iNET StandardsWigent, Mark A., Mazzario, Andrea M. 10 1900 (has links)
ITC/USA 2014 Conference Proceedings / The Fiftieth Annual International Telemetering Conference and Technical Exhibition / October 20-23, 2014 / Town and Country Resort & Convention Center, San Diego, CA / The Enhanced Query Data Recorder (EQDR) has been developed under the Test Resource Management Center's (TRMC) Spectrum Efficient Technologies (SET) T&E S&T program. The EQDR is a network flight recorder built around the iNET standards and which is intended to meet the future needs of the networked telemetry environment. The EQDR is designed to support the "fetch" of recorded test data during a test without interruption to the ongoing recording of data from the test article vehicle network. The key benefits of the network data recorder as implemented in the EQDR are increased flexibility and efficiency of test in an environment with increasing demands on spectrum available for telemetered data. EQDR enables retrieval of individual recorded parameters on an as-needed basis. Having the flexibility to send data only when it is required rather than throughout the duration of the test significantly increases the efficiency with which limited spectrum resources are used. EQDR enables parametric-level data retrieval, based not only on time interval and data source, but also on the content of the recorded data messages. EQDR enables selective, efficient retrieval of individual parameters using indexes derived from the actual values of recorded data.
|
400 |
Spectrum Savings from High Performance Network Recording and Playback Onboard the Test ArticleWigent, Mark A., Mazzario, Andrea M. 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / The Test Resource Management Center's (TRMC) Spectrum Efficient Technologies (SET) S&T program is sponsoring development of the Enhanced Query Data Recorder (EQDR), a network flight recorder that is intended to meet the future needs of the networked telemetry environment. EQDR is designed to support the "fetch" of recorded test data during a test without interrupting the ongoing recording of data from the test article vehicle network. The key benefits of the network data recorder as implemented in EQDR are increased flexibility and efficiency of test in an environment with increasing demands on spectrum available for telemetered data. EQDR enables retrieval of individual recorded parameters on an as-needed basis. Having the flexibility to send data only when it is required rather than throughout the duration of the test significantly increases the efficiency with which limited spectrum resources are used. EQDR enables parametric-level data retrieval, based not only on time interval and data source, but also on the content of the recorded data messages. EQDR enables selective, efficient retrieval of individual parameters using indexes derived from the actual values of recorded data. This paper describes the design of EQDR and the benefits of selective data storage and retrieval in the application of networked telemetry. In addition it describes the performance of the EQDR in terms of data recording and data retrieval rates when implemented on single board computers designed for use in the aeronautical test environment with size, weight, and power constraints.
|
Page generated in 0.0465 seconds