• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiplicateurs et analyse fonctionnelle

Neuwirth, Stefan 19 January 1999 (has links) (PDF)
Nous étudions plusieurs propriétés fonctionnelles d'inconditionnalité en les exprimant à l'aide de multiplicateurs. La première partie est consacrée à l'étude de phénomènes d'inconditionnalité isométrique et presqu'isométrique dans les espaces de Banach séparables. Parmi ceux-ci, la notion la plus générale est celle de ``propriété d'approximation inconditionnelle métrique''. Nous la caractérisons parmi les espaces de Banach de cotype fini par une propriété simple d'``inconditionnalité par blocs''. En nous ramenant à des multiplicateurs de Fourier, nous étudions cette propriété dans les sous-espaces des espaces de Banach de fonctions sur le cercle qui sont engendrés par une suite de caractères $e^(int)$. Nous étudions aussi les suites basiques inconditionnelles isométriques et presqu'isométriques de caractères, en particulier les ensembles de Sidon de constante asymptotiquement 1. Nous obtenons dans chaque cas des propriétés combinatoires sur la suite. La propriété suivante des normes $L^p$ est cruciale pour notre étude: si $p$ est un entier pair, $\int |f|^p = \int (|f^(p/2)|)^2 = \sum |\widehat(f^(p/2))(n)|^2$ est une expression polynomiale en les coefficients de Fourier de $f$ et $\bar f$. Nous proposons d'ailleurs une estimation précise de la constante de Sidon des ensembles à la Hadamard. La deuxième partie étudie les multiplicateurs de Schur: nous caractérisons les suites basiques inconditionnelles isométriques d'entrées de matrice $e_(ij)$ dans la classe de Schatten $S^p$. Les propriétés combinatoires que nous obtenons portent sur les chemins dans le réseau $\N \times \N$ à sommets dans cet ensemble. La troisième partie étudie le rapport entre la croissance d'une suite d'entiers et les propriétés harmoniques et fonctionnelles de la suite de caractères associée. Nous montrons en particulier que toute suite polynomiale, ainsi que la suite des nombres premiers, contient un ensemble $\Lambda(p)$ pour tout $p$ qui n'est pas de Rosenthal.
2

Some problems in harmonic analysis on quantum groups / Quelques problèmes en analyse harmonique sur les groupes quantiques

Wang, Simeng 22 June 2016 (has links)
Cette thèse étudie quelques problèmes d’analyse harmonique sur les groupes quantiques compacts. Elle consiste en trois parties. La première partie présente la théorie Lp élémentaire des transformées de Fourier, les convolutions et les multiplicateurs sur les groupes quantiques compacts, y compris la théorie de Hausdorff-Young et les inégalités de Young.Dans la seconde partie, nous caractérisons les opérateurs de convolution positifs sur un groupe quantique fini qui envoient Lp dans L2, et donnons aussi quelques constructions sur les groupes quantiques compacts infinis. La méthode pour étudier les états non-dégénérés fournit une formule générale pour calculer les états idempotents associés aux images deHopf, qui généralise un travail de Banica, Franz et Skalski. La troisième partie est consacrée à l’étude des ensembles de Sidon, des ensembles _(p) et des notions associées pour les groupes quantiques compacts. Nous établissons différentes caractérisations des ensembles de Sidon, et en particulier nous démontrons que tout ensemble de Sidon est un ensemble de Sidon fort au sens de Picardello. Nous donnons quelques liens entre les ensembles de Sidon, les ensembles _(p) et les lacunarités pour les multiplicateurs de Fourier sur Lp, généralisant un travail de Blendek et Michali˘cek. Nous démontrons aussi l’existence des ensembles de type _(p) pour les systèmes orthogonaux dans les espaces Lp non commutatifs, et déduisons les propriétés correspondantes pour les groupes quantiques compacts. Nous considérons aussi les ensembles de Sidon centraux, et nous prouvons que les groupes quantiques compacts ayant les mêmes règles de fusion et les mêmes fonctions de dimension ont des ensemble de Sidon centraux identiques. Quelques exemples sont aussi étudiés dans cette thèse. Les travaux présentés dans cette thèse se basent sur deux articles de l’auteur. Le premier s’intitule “Lp-improving convolution operators on finite quantum groups” et a été accepté pour publication dans Indiana University Mathematics Journal, et le deuxième est un travail intitulé “Lacunary Fourier series for compact quantum groups” et a été publié en ligne dans Communications in Mathematical Physics. / This thesis studies some problems in the theory of harmonic analysis on compact quantum groups. It consists of three parts. The first part presents some elementary Lp theory of Fourier transforms, convolutions and multipliers on compact quantum groups, including the Hausdorff-Young theory and Young’s inequalities. In the second part, we characterize positive convolution operators on a finite quantum group G which are Lp-improving, and also give some constructions on infinite compact quantum groups. The methods for ondegeneratestates yield a general formula for computing idempotent states associated to Hopf images, which generalizes earlier work of Banica, Franz and Skalski. The third part is devoted to the study of Sidon sets, _(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, _(p)-sets and lacunarities for Lp-Fourier multipliers, generalizing a previous work by Blendek and Michali˘cek. We also prove the existence of _(p)-sets for orthogonal systems in noncommutative Lp-spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included. The thesis is principally based on two works by the author, entitled “Lp-improvingconvolution operators on finite quantum groups” and “Lacunary Fourier series for compact quantum groups”, which have been accepted for publication in Indiana University Mathematics Journal and Communications in Mathematical Physics respectively.

Page generated in 0.0401 seconds