• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 18
  • 11
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 226
  • 52
  • 36
  • 30
  • 23
  • 19
  • 19
  • 18
  • 16
  • 15
  • 15
  • 15
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

High speed very thin films with reverse roll coatings. An experimental investigation of reverse roll coating of fluids using rigid and deformable rolls at high speeds.

Shibata, Yusuke January 2012 (has links)
The objective of a coating operation is to transfer a defect free liquid film onto a continuous substrate in order to meet the requirements of the final products. Mainly two concerns govern the process. The first concern is the economics of the process and the second concern is the quality of the coated film. The economics of the process are dictated by the speed of coating and the film thickness. Clearly, higher speeds mean better productivity hence less cost of operation and thinner films are desirable because less material is being used. Quality is governed by film uniformity and integrity, indicating that the film will perform as designed. Film defects such as streaks or tiny air bubbles are indication that the film properties are not uniform rendering it unacceptable to customers. One of the most versatile coating systems to achieve thin films at high speeds is reverse roll coating which has been used for a long time all over the world. At low speed, typically 1m/s, this coating operation is inherently stable and with small gaps of order 100 microns can ii lead to film thickness of order 30-50 microns. Much research, theoretical and experimental, has been devoted to this coating flow but only at low speeds and for large gaps (>100 microns). There are no comprehensive data how very thin films, 20 microns and less (particularly lower limits in the region of 5 microns) can be achieved at high speeds, of 2 or more metres per second. This study is concerned precisely with this aim, that of investigating the effect of large speeds and small roller gaps (rollers nearly touching or in elastohydrodynamic contact) to achieve the very thin films desired by modern applications (electronics, medical and others). In order to achieve this aim, a rig was designed and built to enable to understand the effect of various coating conditions and liquid properties on the metered film thickness and coating instability. To achieve thin films at high speeds, small roll gap and low viscosity are needed, however flow instabilities will develop under these conditions. To achieve stable coating window at high speeds high surface tension is needed. It was found that the roll gap and the viscosity have complicated effect on the coating window. In the case of low viscosity liquid (7mPa.s), small roll gaps are needed, whereas in the case of high viscosity liquid (more than 30mPa.s), large gaps are needed. It was found that Weber number is better describer for ribbing instability in rigid reverse roll coating unlike in rigid forward roll coating in which capillary number is the one. In addition the potential of reverse deformable roll coating (rolls in elastohydrodynamic contact) was investigated in order to achieve much thinner films at higher speeds. As a result of the investigation of reverse deformable roll coating, it was found that there is a possibility to get much thinner stable films at much higher speeds compared to reverse rigid roll coating. The liquid transfer from an applicator roller to a PET film was investigated in this study. It was found that air stagnation at downstream meniscus and air entrainment at upstream meniscus depend on the liquid properties such as viscosity and surface tension and coating conditions such as web tension and wrap angle of web. As a result, wet film instability also depends on liquid properties and coating conditions. It was found that air stagnation causes streaks on the wet film and air entrainment caused bubbles on the wet film. To get a stable wet film, it was found that suitable viscosity and high surface tension were needed. / TOYOBO
142

DEVELOPMENTAL CHANGES IN AUDITORY TEMPO SENSITIVITY AND PREFERRED TEMPO

Mercier, Ann Mary Pierrette 27 March 2007 (has links)
No description available.
143

Light Exposure, Sleep-wake Patterns, Mood, and Pain in Hospitalized Adult Medical Patients

Bernhofer, Esther I. 24 August 2012 (has links)
No description available.
144

Cultural Influence on the Perception and Cognition of Musical Pulse and Meter

Kung, Hsiang-Ning 09 October 2017 (has links)
No description available.
145

Does Training Enhance Entraining? Musical Ability and Neural Signatures of Beat Perception

Pinard-Welyczko, Kira 10 August 2017 (has links)
No description available.
146

Characterization of the jet emanating from a self-exciting flexible membrane nozzle

Lakhamraju, Raghava Raju 05 October 2012 (has links)
No description available.
147

Neural and kinematic assessment of dance partnering as an ecological model of haptic mutual entrainment

Chauvigné, Léa 11 1900 (has links)
Entrainment is the rhythmic coordination of movement with a signal or other person. Most studies on entrainment have looked at synchronization with auditory or visual signals, whereas much less is known about how entrainment emerges mutually between individuals, especially when they are in physical contact with one another. In this dissertation, I empirically explored dance partnering as an ecological model for understanding interpersonal entrainment through haptic interaction. I began by performing a statistical meta-analysis of functional neuroimaging articles devoted to the most common experimental paradigm for entrainment, namely externally-paced finger tapping to an acoustic rhythmic stimulus (Chapter 2). The results showed that the cerebellar vermis was a strong neural marker of entrainment, as it was more activated by externally-paced tapping than by self-paced tapping, whereas the basal ganglia was activated by both types of rhythmic movements. Next, I used functional magnetic resonance imaging (fMRI) with a group of participants trained at couple dancing in order to explore the neural basis of haptic mutual entrainment, with a focus on the dynamics of leading and following (Chapter 3). While mutual interaction overall engaged brain networks involved in somatosensation, internal-body sensation and social cognition, leading showed enhanced activity principally in areas for motor control and self-initiated action, whereas following showed enhanced activity mainly in sensory and social-cognition areas. Finally, I used 3D motion capture to explore multisensory coupling for mutual entrainment at the group level during folk dancing (Chapter 4). The results showed that dancers relied most extensively on haptic coupling to synchronize as a group, whereas auditory and visual coupling were dependent on the spatiotemporal context. These studies advance our understanding of the neural and behavioural mechanisms underlying joint actions in which entrainment emerges mutually through haptic interaction. / Thesis / Doctor of Philosophy (PhD) / Entrainment is the rhythmic coordination of movement with a signal or other person. Most studies on entrainment have looked at synchronization with auditory or visual signals, whereas much less is known about how entrainment emerges mutually between individuals, especially when they are in physical contact with one another. I began my research by performing a statistical analysis of the literature examining the brain basis of synchronization with auditory signals, identifying a key brain area for entrainment. Next, using a group of participants trained at couple dancing, I explored the brain areas engaged when two individuals in physical contact improvised movement together, focusing on who is leading or following the interaction. Finally, I explored how folk dancers use multiple sensory signals (auditory, visual and tactile) to synchronize as a group. These studies advance our understanding of the neural and behavioural mechanisms by which people mutually entrain through physical interaction.
148

The Exchange of Fine Muddy Sediment in Gravel-Bed Fluvial Systems

Schiller, Brayden Jeffery 31 May 2024 (has links)
The presence of fine muddy sediment (grain size < 0.1 mm) in streams has many impacts on the fluvial system and those relying on it, both humans and aquatic biota. Previously, fine sediment was considered a washload and has been ignored in transport models. More recently, it has been treated as being transported once the surface gravel layer that stores it is able to be mobilized. We propose that the surface layer need not be mobilized in order for muddy sediment to travel through the fluvial system in a series of erosive and depositional events. Our first study uses a new in situ device to show how mud entrainment from immobile gravel beds behaves cohesionlessly and can be modeled using the framework of classic sand-based models modified to account for hiding effects present in the stream bed. It also provides a method to predict how deep into the surface layer of gravel entrainment of fine sediment will occur given flow and stream bed characteristics. The second study investigates the primary pathway that fine sediment is traveling to get captured within bluehead chub fish nests. It was determined that more deposition of mud occurred in the upstream half of the nest concluding that the primary pathway was hyporheic pumping through the nest. Capture efficiencies of the nests were also found to increase as the length of nests increased. Both of these studies provide supporting evidence in the need to transition modeling fine sediment transport as a series of deposition and resuspension. / Master of Science / Fine muddy sediment (grain size < 0.1 mm) is present in natural streams and has many impacts on the stream system and those relying on it, including humans, plants, animals, and other organisms in the ecosystem. Previously, fine sediment was treated as being too small to consider in models that aid in understanding how a stream transports sediment. This is because small sediment stays suspended in the water column more easily than larger sediment. Therefore, it was just assumed to pass through the system and never deposit into the stream bed. However, in nature we observe large quantities of fine sediment being stored within the stream bed. More recently, it has been assumed that the sediment that does deposit will be transported once the surface gravel layer that stores it is able to be mobilized. That is, the surface gravel layer shields the fine sediment trapped between it and that the mud will stay put until that gravel is moved. We propose that the surface layer need not be mobilized for muddy sediment to travel through the fluvial system in a series of erosive and depositional events. Our first study uses a new device that forces erosion of mud to show how mud entrainment, or the process of how a fluid picks something up and carries it, from immobile gravel beds can be modeled using the framework of classic sand-based entrainment models modified to account for hiding effects, or protection against entrainment of a smaller sediment by a larger sediment shielding it, present in the stream bed. It also provides a method to predict how deep into the surface layer of gravel that fine sediment will be eroded given flow and stream bed characteristics. This is beneficial in estimating the amount of sediment that will be eroded during a given storm event. The second study investigates the primary pathway that fine sediment is traveling to get captured within bluehead chub gravel fish nests used for spawning their eggs and reproducing. It was determined that more deposition of mud occurred in the upstream half of the nest. This leads us to believe that the primary pathway of sediment traveling through the nest was hyporheic pumping through the nest, or the process of water flowing down through the surface layers of sediment in the stream bed. Capture efficiencies, or the ratio of how much of the sediment that traveled through the nest was captured, of the nests were also found to increase as the length of nests in the downstream direction increased. Both of these studies provide supporting evidence in the need to transition modeling fine sediment transport as a series of deposition and resuspension.
149

Air entrainment in dip coating under reduced air pressures

Benkreira, Hadj, Khan, M.I. January 2008 (has links)
Yes / This study examines experimentally and for the first time the effect of reduced air pressure on dynamic wetting. The purpose is to assess the role of air viscosity on dynamic wetting failure which hitherto has been speculated on but not measured. In this paper we used dip coating as the model experimental flow and report data on air entrainment velocity Vae we measured with a series of silicone oils in a range of viscosities in a vacuum chamber where the pressure can be reduced from atmospheric down to a few mbar when the mean molecular free path of air is large and air ceases to have a viscosity. To complement earlier work, we carried out the experiments with a range of substrates of varying roughness. The substrates were chosen so that for each one, their two sides differ in roughness. This enables simultaneous comparative observation of their wetting performance and reduces the experimental error in assessing the role of roughness. The data presented here capture the effects of viscosity, roughness and air pressure but the important result of this study is that Vae can be increased considerably (exponentially) when the pressure is reduced with the suggestion that Vae approaches infinity as pressure approaches zero. In other words, the role of the surrounding air viscosity is important in dynamic wetting. The data from this study have significant implication to the fundamental understanding of dynamic wetting. Indeed they form the missing data link to fully understand this phenomenon. The data presented in this work also confirm the complex role of roughness, in that it can increase or decrease the air entrainment speed depending on the value on the viscosity of the coating solution. The results presented in this paper are very useful in practice as they imply that if one chooses carefully roughness one can coat viscous formulation at unexpectedly very high speeds with a moderate vacuum (50 mbar typically).
150

Air entrainment in angled dip coating

Cohu, O., Benkreira, Hadj January 1998 (has links)
Yes / The coating flow examined here, labelled angled dip coating, is that where a substrate enters a pool of liquid forming an angle ß with the vertical so that it intersects the liquid along a wetting line which is not perpendicular to the direction of its motion. This flow situation is distinctly different from that where the substrate, inclined in the other dimension by the so-called angle of entry ¿, intersects the liquid surface perpendicularly to its motion. Experiments were carried out with various liquids to determine the effect of ß on the substrate velocity at which air is entrained into the liquid. It was observed that as this angle departs from zero, air entrainment is delayed to higher speeds. The data show that the speed which is relevant to air entrainment is not the velocity of the substrate itself but its component normal to the wetting line. This result has important practical implications and suggests that this fundamental principle is also applicable to other coating flows.

Page generated in 0.3207 seconds