• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre pontos periódicos de funções do intervalo e do disco / About periodic points of functions of interval and of disk

Araujo, Cristiane Duarte Nascimento 23 March 2015 (has links)
Submitted by Reginaldo Soares de Freitas (reginaldo.freitas@ufv.br) on 2015-12-07T15:50:31Z No. of bitstreams: 1 texto completo.pdf: 1287813 bytes, checksum: 4d11c62be8ea37dacaf482dd7d1413e4 (MD5) / Made available in DSpace on 2015-12-07T15:50:31Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1287813 bytes, checksum: 4d11c62be8ea37dacaf482dd7d1413e4 (MD5) Previous issue date: 2015-03-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O objetivo deste trabalho é apresentar a prova de um resultado importante, conhecido como Teorema de Sarkovskii, que afirma: Seja f : [0, 1] → [0, 1] contínua que possui um ponto periódico com período n. Se n < m, na ordenação de Sarkovskii, então f tem um ponto periódico de período m. E a prova do seguinte resultado devido a Bowen e Franks, [3]: Seja f : [0, 1] → [0, 1] contínua que possui um ponto periódico de período n= 2dm, onde m é ımpar e m > 1. Então, a entropia topológica h(f ) > 1/n log 2, e existe um Kn (independente de f ) tal que, se r = 2d k e k ≥ Kn , então f tem, pelo menos, 2r/n pontos de período primo r, que nos dará uma cota inferior para o número de pontos periódicos. Além disso, apresentar a construção de um difeomorfismo que não possui fontes ou poços periódicos. / The objective of this work is to present the proof of an important result known as Sarkovskii’s theorem which states: Let f : [0.1] → [0.1] be continuous and have a periodic point with period n. If n < m, in the Sarkovskii ordering then f has a periodic point of period m. And the proof the following result due to Bowen and Franks, [3]: Let f : [0.1] → [0.1] be continuous and have a periodic point of period n = 2d m, where m is odd and m > 1. Then the topological entropy h(f ) > log 2, and there is a Kn n r (independent of f ) such that, if r = 2d k and k ≥ Kn , then f has at least 2 n points of prime period r, that will give us a lower bound for the number of periodic points. Also, to present build of a diffeomorphism that has no periodic sources or sinks.
2

Entropia topológica e tangências homoclínicas

Batista, Caroline Morais 04 August 2014 (has links)
Submitted by Mayara Nascimento (mayara.nascimento@ufba.br) on 2016-06-07T13:11:12Z No. of bitstreams: 1 DISSERTAÇÃO_Caroline.pdf: 640194 bytes, checksum: 30e2f5e25d949d9b2d7617dc55d05e2c (MD5) / Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-13T16:51:21Z (GMT) No. of bitstreams: 1 DISSERTAÇÃO_Caroline.pdf: 640194 bytes, checksum: 30e2f5e25d949d9b2d7617dc55d05e2c (MD5) / Made available in DSpace on 2016-06-13T16:51:21Z (GMT). No. of bitstreams: 1 DISSERTAÇÃO_Caroline.pdf: 640194 bytes, checksum: 30e2f5e25d949d9b2d7617dc55d05e2c (MD5) / Neste trabalho estudamos a relação entre a existência de tangências homoclínicas, continuidade da entropia topológica e existência de medidas de máxima entropia. Essencialmente, dos resultados de Bronzi e Tahzibi, um difeomorfismo com uma tangência homoclínica associada a um conjunto básico hiperbólico é ponto de variação da entropia se e somente se a peça básica tem entropia topológica total. Mais ainda, seguindo Buzzi, usamos tangências homoclínicas para construir difeomorfismos em dimensão 2 que não tenham medida de entropia maximal.
3

Estimativas para entropia, extensões simbólicas e hiperbolicidade para difeomorfismos simpléticos e conservativos / Lower bounds for entropy, symbolic extensions and hyperbolicity in the symplectic and volume preserving scenario

Catalan, Thiago Aparecido 14 February 2011 (has links)
Provamos que \'C POT. 1\' genericamente difeomorfismos simpléticos ou são Anosov ou possuem entropia topológica limitada por baixo pelo supremo sobre o menor expoente de Lyapunov positivo dos pontos periódicos hiperbólicos. Usando isto exibimos exemplos de difeomorfismos conservativos sobre superfícies que não são pontos de semicontinuidade superior para a entropia topológica. Provamos também que \'C POT. 1\' genericamente difeomorfismos simpléticos não Anosov não admitem extensões simbólicas. Mudando de assunto, Hayashi estendeu um resultado de Mañé, provando que todo difeomorfismo f que possui uma \'C POT. 1\' vizinhança U, onde todos os pontos periódicos de qualquer g \'PERTENCE A\' U são hiperbólicos, é de fato um difeomorfismo Axioma A. Aqui, provamos o resultado análogo a este no caso conservativo, e a partir deste é possível exibir uma demonstração de um fato \"folclore\", a conjectura de Palis no caso conservativo / We prove that a \'C POT.1\' generic symplectic diffeomorphism is either Anosov or the topological entropy is bounded from below by the supremum over the smallest positive Lyapunov exponent of the periodic points. By means of that we give examples of area preserving diffeomorphisms which are not point of upper semicontinuity of entropy function in \'C POT. 1\' topology. We also prove that \'C POT. 1\'- generic symplectic diffeomorphisms outside the Anosov ones do not admit symbolic extension. Changing of subject, Hayashi has extended a result of Mañé, proving that every diffeomorphism f which has a \'C POT. 1\'-neighborhood U, where all periodic points of any g \'IT BELONGS\' U are hyperbolic, it is an Axiom A diffeomorphism. Here, we prove the analogous result in the volume preserving scenario, and using it we prove a \"folklore\" fact, the Palis conjecture in this context
4

Estimativas de entropia e um resultado de existência de ferraduras para uma teoria de forcing de homeomorfismos de superfícies / Entropy estimates and a stronger theorem on the existence of horseshoes for a forcing theory for surface homeomorphism

Silva, Everton Juliano da 17 June 2019 (has links)
Neste trabalho estudamos o valor mínimo da entropia topológica para uma classe de aplicações isotópicas à identidade em superfícies orientáveis (sem bordo, não necessariamente compactas e possivelmente de tipo finito) sob um ponto de vista estritamente topológico. Este estudo é feito utilizando a nova teoria de forcing para trajetórias transversas de Le Calvez e Tal que se baseia na teoria de Brouwer equivariante, em que é possível folhear superfícies com folhas relacionadas a teoria de Brouwer no plano. O principal resultado deste trabalho é uma melhora na estimativa da entropia topológica obtida por Le Calvez e Tal em um recente trabalho em que os autores buscam ferraduras topológicas em superfícies orientáveis utilizando ferramentas similares apresentadas aqui. Uma aplicação deste resultado acima é feita utilizando aplicações em S^2 que possuam um ponto fixo cuja trajetória pela isotopia deste ponto não seja homotópica a um múltiplo de um loop simples. Com estas hipóteses, melhoramos a estimativa dada por Le Calvez e Tal em que é encontrado um valor mínimo estritamente positivo para a entropia topológica desta aplicação. / In this work we study the minimum topological entropy value for one class of maps isotopics to the identity in oriented surfaces (without border, not necessary compacts and possibly of finite type) under the point of view strictly topological. This study is done using the new forcing theory to transverse trajectories from Le Calvez and Tal which it is based to equivariant Brouwer Theory, on what it is possible to leaf surfaces with leaves related to plane Brouwer theory. The main result in this work is a improvement in the estimates from the topological entropy obtained by Le Calvez and Tal in one recent work where the authors seek topological horseshoes on oriented surfaces using tools very similar to that are shown here. One application of the above result is done using maps on S^2 that have a fixed point whose trajectory by the isotopy of this point do not be homotopic to a multiple of a simple loop. With these hypotheses, we improve the estimates given by Le Calvez and Tal on what is found a strictly positive minimum value to the topological entropy of this map.
5

Estimativas para entropia, extensões simbólicas e hiperbolicidade para difeomorfismos simpléticos e conservativos / Lower bounds for entropy, symbolic extensions and hyperbolicity in the symplectic and volume preserving scenario

Thiago Aparecido Catalan 14 February 2011 (has links)
Provamos que \'C POT. 1\' genericamente difeomorfismos simpléticos ou são Anosov ou possuem entropia topológica limitada por baixo pelo supremo sobre o menor expoente de Lyapunov positivo dos pontos periódicos hiperbólicos. Usando isto exibimos exemplos de difeomorfismos conservativos sobre superfícies que não são pontos de semicontinuidade superior para a entropia topológica. Provamos também que \'C POT. 1\' genericamente difeomorfismos simpléticos não Anosov não admitem extensões simbólicas. Mudando de assunto, Hayashi estendeu um resultado de Mañé, provando que todo difeomorfismo f que possui uma \'C POT. 1\' vizinhança U, onde todos os pontos periódicos de qualquer g \'PERTENCE A\' U são hiperbólicos, é de fato um difeomorfismo Axioma A. Aqui, provamos o resultado análogo a este no caso conservativo, e a partir deste é possível exibir uma demonstração de um fato \"folclore\", a conjectura de Palis no caso conservativo / We prove that a \'C POT.1\' generic symplectic diffeomorphism is either Anosov or the topological entropy is bounded from below by the supremum over the smallest positive Lyapunov exponent of the periodic points. By means of that we give examples of area preserving diffeomorphisms which are not point of upper semicontinuity of entropy function in \'C POT. 1\' topology. We also prove that \'C POT. 1\'- generic symplectic diffeomorphisms outside the Anosov ones do not admit symbolic extension. Changing of subject, Hayashi has extended a result of Mañé, proving that every diffeomorphism f which has a \'C POT. 1\'-neighborhood U, where all periodic points of any g \'IT BELONGS\' U are hyperbolic, it is an Axiom A diffeomorphism. Here, we prove the analogous result in the volume preserving scenario, and using it we prove a \"folklore\" fact, the Palis conjecture in this context
6

Famílias Anosov: estabilidade estrutural, variedades invariantes, e entropía para sistemas dinâmicos não-estacionários / Anosov families: structural stability, Invariant manifolds and entropy for non-stationary dynamical sytems

Acevedo, Jeovanny de Jesus Muentes 24 November 2017 (has links)
As famílias Anosov foram introduzidas por P. Arnoux e A. Fisher, motivados por generalizar a noção de difeomorfismo de Anosov. A grosso modo, as famílias Anosov são sequências de difeomorfismos (fi)i&#8712Z definidos em uma sequencia de variedades Riemannianas compactas (Mi)i&#8712Z, em que fi: Mi ->Mi+1 para todo i &#8712 Z, tal que a composição fi+no· · ·ofi, para n >=1, tem comportamento assintoticamente hiperbólico. Esta noção é conhecida como um sistema dinâmico não-estacionário ou um sistema dinâmico não-autônomo. Sejam M a união disjunta de cada Mi, para i &#8712 Z, e Fm(M) o conjunto consistente das famílias de difeomorfismos (fi)i&#8712Z de classe Cm definidos na sequência (Mi)i&#8712Z. O propósito principal deste trabalho é mostrar algumas propriedades das famílias Anosov. Em particular, mostraremos que o conjunto destas famílias é aberto em Fm(M), em que Fm(M) é munido da topologia forte (ou topologia Whitney); a estabilidade estrutural de certa classe de famílias Anosov, considerando conjugações topológicas uniformes; e várias versões para os Teoremas de variedades estáveis e instáveis. Os resultados que serão apresentados aqui generalizam alguns outros resultados obtidos em Sistemas Dinâmicos Aleatórios, os quais serão mencionados ao longo do trabalho. Além do anterior, será introduzida a entropia topológica para elementos em Fm(M) e mostraremos algumas das suas propriedades. Provaremos que esta entropia é contínua em Fm(M) munido da topologia forte. Porém, ela é descontínua em cada elemento de Fm(M) munido da topologia produto. Também apresentaremos um resultado que pode ser uma ferramenta de muita utilidade no estudo da continuidade da entropia topológica de difeomorfismos definidos em variedades compactas. Finalizaremos o trabalho dando uma lista de problemas que surgiram ao longo desta pesquisa e que serão analisados em um trabalho futuro. / Anosov families were introduced by P. Arnoux and A. Fisher, motivated by generalizing the notion of Anosov dieomorphisms. Roughly, Anosov families are sequences of dieomorphisms (fi)i&#8712Z dened on a sequence of compact Riemannian manifolds (Mi)i&#8712Z, where fi: Mi -> Mi+1 for all i &#8712 Z, such that the composition fi+n o · · · o fi, for n >=1, has asymptotically hyperbolic behavior. This notion is known as a non-stationary dynamical system or a non-autonomous dynamical system. Let M be the disjoint union of each Mi, for each i &#8712 Z, and Fm(M) the set consisting of families of Cm-dieomorphisms (fi)i&#8712Z dened on the sequence (Mi)i&#8712Z. The main goal of this work is to explore some properties of Anosov families. In particular, we will show that the set consisting of these families is open in Fm(M), where Fm(M) is endowed with the strong topology (or Whitney topology); the structural stability of a certain class of Anosov families, considering uniform topological conjugacies; and some versions of stable and unstable manifold theorems. The results that will be presented here generalize some results obtained in Random Dynamical Systems, which will be mentioned throughout the work. In addition to the above mentioned theorems, the topological entropy for elements in Fm(M) will be introduced, and we will show some of its properties. We will prove that this entropy is continuous on Fm(M) endowed with strong topology. However, it is discontinuous at each element of Fm(M) endowed with the product topology. We will also present a result that can be a very useful tool in the study of the continuity of the topological entropy of dieomorphisms dened on compact manifolds. We will nish the work by giving a list of problems that have arisen throughout this research and that will be analyzed in a future work.
7

Famílias Anosov: estabilidade estrutural, variedades invariantes, e entropía para sistemas dinâmicos não-estacionários / Anosov families: structural stability, Invariant manifolds and entropy for non-stationary dynamical sytems

Jeovanny de Jesus Muentes Acevedo 24 November 2017 (has links)
As famílias Anosov foram introduzidas por P. Arnoux e A. Fisher, motivados por generalizar a noção de difeomorfismo de Anosov. A grosso modo, as famílias Anosov são sequências de difeomorfismos (fi)i&#8712Z definidos em uma sequencia de variedades Riemannianas compactas (Mi)i&#8712Z, em que fi: Mi ->Mi+1 para todo i &#8712 Z, tal que a composição fi+no· · ·ofi, para n >=1, tem comportamento assintoticamente hiperbólico. Esta noção é conhecida como um sistema dinâmico não-estacionário ou um sistema dinâmico não-autônomo. Sejam M a união disjunta de cada Mi, para i &#8712 Z, e Fm(M) o conjunto consistente das famílias de difeomorfismos (fi)i&#8712Z de classe Cm definidos na sequência (Mi)i&#8712Z. O propósito principal deste trabalho é mostrar algumas propriedades das famílias Anosov. Em particular, mostraremos que o conjunto destas famílias é aberto em Fm(M), em que Fm(M) é munido da topologia forte (ou topologia Whitney); a estabilidade estrutural de certa classe de famílias Anosov, considerando conjugações topológicas uniformes; e várias versões para os Teoremas de variedades estáveis e instáveis. Os resultados que serão apresentados aqui generalizam alguns outros resultados obtidos em Sistemas Dinâmicos Aleatórios, os quais serão mencionados ao longo do trabalho. Além do anterior, será introduzida a entropia topológica para elementos em Fm(M) e mostraremos algumas das suas propriedades. Provaremos que esta entropia é contínua em Fm(M) munido da topologia forte. Porém, ela é descontínua em cada elemento de Fm(M) munido da topologia produto. Também apresentaremos um resultado que pode ser uma ferramenta de muita utilidade no estudo da continuidade da entropia topológica de difeomorfismos definidos em variedades compactas. Finalizaremos o trabalho dando uma lista de problemas que surgiram ao longo desta pesquisa e que serão analisados em um trabalho futuro. / Anosov families were introduced by P. Arnoux and A. Fisher, motivated by generalizing the notion of Anosov dieomorphisms. Roughly, Anosov families are sequences of dieomorphisms (fi)i&#8712Z dened on a sequence of compact Riemannian manifolds (Mi)i&#8712Z, where fi: Mi -> Mi+1 for all i &#8712 Z, such that the composition fi+n o · · · o fi, for n >=1, has asymptotically hyperbolic behavior. This notion is known as a non-stationary dynamical system or a non-autonomous dynamical system. Let M be the disjoint union of each Mi, for each i &#8712 Z, and Fm(M) the set consisting of families of Cm-dieomorphisms (fi)i&#8712Z dened on the sequence (Mi)i&#8712Z. The main goal of this work is to explore some properties of Anosov families. In particular, we will show that the set consisting of these families is open in Fm(M), where Fm(M) is endowed with the strong topology (or Whitney topology); the structural stability of a certain class of Anosov families, considering uniform topological conjugacies; and some versions of stable and unstable manifold theorems. The results that will be presented here generalize some results obtained in Random Dynamical Systems, which will be mentioned throughout the work. In addition to the above mentioned theorems, the topological entropy for elements in Fm(M) will be introduced, and we will show some of its properties. We will prove that this entropy is continuous on Fm(M) endowed with strong topology. However, it is discontinuous at each element of Fm(M) endowed with the product topology. We will also present a result that can be a very useful tool in the study of the continuity of the topological entropy of dieomorphisms dened on compact manifolds. We will nish the work by giving a list of problems that have arisen throughout this research and that will be analyzed in a future work.

Page generated in 0.0858 seconds