• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Displaced frame difference coding for video compression

Czerepinski, Przemyslaw Jan January 1998 (has links)
No description available.
2

A Novel Multi-Symbol Curve Fit based CABAC Framework for Hybrid Video Codec's with Improved Coding Efficiency and Throughput

Rapaka, Krishnakanth 21 September 2012 (has links)
Video compression is an essential component of present-day applications and a decisive factor between the success or failure of a business model. There is an ever increasing demand to transmit larger number of superior-quality video channels into the available transmission bandwidth. Consumers are increasingly discerning about the quality and performance of video-based products and there is therefore a strong incentive for continuous improvement in video coding technology for companies to have market edge over its competitors. Even though processor speeds and network bandwidths continue to increase, a better video compression results in a more competitive product. This drive to improve video compression technology has led to a revolution in the last decade. In this thesis we addresses some of these data compression problems in a practical multimedia system that employ Hybrid video coding schemes. Typically Real life video signals show non-stationary statistical behavior. The statistics of these signals largely depend on the video content and the acquisition process. Hybrid video coding schemes like H264/AVC exploits some of the non-stationary characteristics but certainly not all of it. Moreover, higher order statistical dependencies on a syntax element level are mostly neglected in existing video coding schemes. Designing a video coding scheme for a video coder by taking into consideration these typically observed statistical properties, however, offers room for significant improvements in coding efficiency.In this thesis work a new frequency domain curve-fitting compression framework is proposed as an extension to H264 Context Adaptive Binary Arithmetic Coder (CABAC) that achieves better compression efficiency at reduced complexity. The proposed Curve-Fitting extension to H264 CABAC, henceforth called as CF-CABAC, is modularly designed to conveniently fit into existing block based H264 Hybrid video Entropy coding algorithms. Traditionally there have been many proposals in the literature to fuse surfaces/curve fitting with Block-based, Region based, Training-based (VQ, fractals) compression algorithms primarily to exploiting pixel- domain redundancies. Though the compression efficiency of these are expectantly better than DCT transform based compression, but their main drawback is the high computational demand which make the former techniques non-competitive for real-time applications over the latter. The curve fitting techniques proposed so far have been on the pixel domain. The video characteristic on the pixel domain are highly non-stationary making curve fitting techniques not very efficient in terms of video quality, compression ratio and complexity. In this thesis, we explore using curve fitting techniques to Quantized frequency domain coefficients. we fuse this powerful technique to H264 CABAC Entropy coding. Based on some predictable characteristics of Quantized DCT coefficients, a computationally in-expensive curve fitting technique is explored that fits into the existing H264 CABAC framework. Also Due to the lossy nature of video compression and the strong demand for bandwidth and computation resources in a multimedia system, one of the key design issues for video coding is to optimize trade-off among quality (distortion) vs compression (rate) vs complexity. This thesis also briefly studies the existing rate distortion (RD) optimization approaches proposed to video coding for exploring the best RD performance of a video codec. Further, we propose a graph based algorithm for Rate-distortion. optimization of quantized coefficient indices for the proposed CF-CABAC entropy coding.
3

DCT-based Image/Video Compression: New Design Perspectives

Sun, Chang January 2014 (has links)
To push the envelope of DCT-based lossy image/video compression, this thesis is motivated to revisit design of some fundamental blocks in image/video coding, ranging from source modelling, quantization table, quantizers, to entropy coding. Firstly, to better handle the heavy tail phenomenon commonly seen in DCT coefficients, a new model dubbed transparent composite model (TCM) is developed and justified. Given a sequence of DCT coefficients, the TCM first separates the tail from the main body of the sequence, and then uses a uniform distribution to model DCT coefficients in the heavy tail, while using a parametric distribution to model DCT coefficients in the main body. The separation boundary and other distribution parameters are estimated online via maximum likelihood (ML) estimation. Efficient online algorithms are proposed for parameter estimation and their convergence is also proved. When the parametric distribution is truncated Laplacian, the resulting TCM dubbed Laplacian TCM (LPTCM) not only achieves superior modeling accuracy with low estimation complexity, but also has a good capability of nonlinear data reduction by identifying and separating a DCT coefficient in the heavy tail (referred to as an outlier) from a DCT coefficient in the main body (referred to as an inlier). This in turn opens up opportunities for it to be used in DCT-based image compression. Secondly, quantization table design is revisited for image/video coding where soft decision quantization (SDQ) is considered. Unlike conventional approaches where quantization table design is bundled with a specific encoding method, we assume optimal SDQ encoding and design a quantization table for the purpose of reconstruction. Under this assumption, we model transform coefficients across different frequencies as independently distributed random sources and apply the Shannon lower bound to approximate the rate distortion function of each source. We then show that a quantization table can be optimized in a way that the resulting distortion complies with certain behavior, yielding the so-called optimal distortion profile scheme (OptD). Guided by this new theoretical result, we present an efficient statistical-model-based algorithm using the Laplacian model to design quantization tables for DCT-based image compression. When applied to standard JPEG encoding, it provides more than 1.5 dB performance gain (in PSNR), with almost no extra burden on complexity. Compared with the state-of-the-art JPEG quantization table optimizer, the proposed algorithm offers an average 0.5 dB gain with computational complexity reduced by a factor of more than 2000 when SDQ is off, and a 0.1 dB performance gain or more with 85% of the complexity reduced when SDQ is on. Thirdly, based on the LPTCM and OptD, we further propose an efficient non-predictive DCT-based image compression system, where the quantizers and entropy coding are completely re-designed, and the relative SDQ algorithm is also developed. The proposed system achieves overall coding results that are among the best and similar to those of H.264 or HEVC intra (predictive) coding, in terms of rate vs visual quality. On the other hand, in terms of rate vs objective quality, it significantly outperforms baseline JPEG by more than 4.3 dB on average, with a moderate increase on complexity, and ECEB, the state-of-the-art non-predictive image coding, by 0.75 dB when SDQ is off, with the same level of computational complexity, and by 1 dB when SDQ is on, at the cost of extra complexity. In comparison with H.264 intra coding, our system provides an overall 0.4 dB gain or so, with dramatically reduced computational complexity. It offers comparable or even better coding performance than HEVC intra coding in the high-rate region or for complicated images, but with only less than 5% of the encoding complexity of the latter. In addition, our proposed DCT-based image compression system also offers a multiresolution capability, which, together with its comparatively high coding efficiency and low complexity, makes it a good alternative for real-time image processing applications.
4

A Novel Multi-Symbol Curve Fit based CABAC Framework for Hybrid Video Codec's with Improved Coding Efficiency and Throughput

Rapaka, Krishnakanth 21 September 2012 (has links)
Video compression is an essential component of present-day applications and a decisive factor between the success or failure of a business model. There is an ever increasing demand to transmit larger number of superior-quality video channels into the available transmission bandwidth. Consumers are increasingly discerning about the quality and performance of video-based products and there is therefore a strong incentive for continuous improvement in video coding technology for companies to have market edge over its competitors. Even though processor speeds and network bandwidths continue to increase, a better video compression results in a more competitive product. This drive to improve video compression technology has led to a revolution in the last decade. In this thesis we addresses some of these data compression problems in a practical multimedia system that employ Hybrid video coding schemes. Typically Real life video signals show non-stationary statistical behavior. The statistics of these signals largely depend on the video content and the acquisition process. Hybrid video coding schemes like H264/AVC exploits some of the non-stationary characteristics but certainly not all of it. Moreover, higher order statistical dependencies on a syntax element level are mostly neglected in existing video coding schemes. Designing a video coding scheme for a video coder by taking into consideration these typically observed statistical properties, however, offers room for significant improvements in coding efficiency.In this thesis work a new frequency domain curve-fitting compression framework is proposed as an extension to H264 Context Adaptive Binary Arithmetic Coder (CABAC) that achieves better compression efficiency at reduced complexity. The proposed Curve-Fitting extension to H264 CABAC, henceforth called as CF-CABAC, is modularly designed to conveniently fit into existing block based H264 Hybrid video Entropy coding algorithms. Traditionally there have been many proposals in the literature to fuse surfaces/curve fitting with Block-based, Region based, Training-based (VQ, fractals) compression algorithms primarily to exploiting pixel- domain redundancies. Though the compression efficiency of these are expectantly better than DCT transform based compression, but their main drawback is the high computational demand which make the former techniques non-competitive for real-time applications over the latter. The curve fitting techniques proposed so far have been on the pixel domain. The video characteristic on the pixel domain are highly non-stationary making curve fitting techniques not very efficient in terms of video quality, compression ratio and complexity. In this thesis, we explore using curve fitting techniques to Quantized frequency domain coefficients. we fuse this powerful technique to H264 CABAC Entropy coding. Based on some predictable characteristics of Quantized DCT coefficients, a computationally in-expensive curve fitting technique is explored that fits into the existing H264 CABAC framework. Also Due to the lossy nature of video compression and the strong demand for bandwidth and computation resources in a multimedia system, one of the key design issues for video coding is to optimize trade-off among quality (distortion) vs compression (rate) vs complexity. This thesis also briefly studies the existing rate distortion (RD) optimization approaches proposed to video coding for exploring the best RD performance of a video codec. Further, we propose a graph based algorithm for Rate-distortion. optimization of quantized coefficient indices for the proposed CF-CABAC entropy coding.
5

Evaluating and Implementing JPEG XR Optimized for Video Surveillance

Yu, Lang January 2010 (has links)
<p>This report describes both evaluation and implementation of the new coming image compression standard JPEG XR. The intention is to determine if JPEG XR is an appropriate standard for IP based video surveillance purposes. Video surveillance, especially IP based video surveillance, currently has an increasing role in the security market. To be a good standard for surveillance, the video stream generated by the camera is required to be low bit-rate, low latency on the network and at the same time keep a high dynamic display range. The thesis start with a deep insightful study of JPEG XR encoding standard. Since the standard could have different settings,optimized settings are applied to JPEG XR encoder to fit the requirement of network video surveillance. Then, a comparative evaluation of the JPEG XR versusthe JPEG is delivered both in terms of objective and subjective way. Later, part of the JPEG XR encoder is implemented in hardware as an accelerator for further evaluation. SystemVerilog is the coding language. TSMC 40nm process library and Synopsys ASIC tool chain are used for synthesize. The throughput, area, power ofthe encoder are given and analyzed. Finally, the system integration of the JPEGXR hardware encoder to Axis ARTPEC-X SoC platform is discussed.</p>
6

Evaluating and Implementing JPEG XR Optimized for Video Surveillance

Yu, Lang January 2010 (has links)
This report describes both evaluation and implementation of the new coming image compression standard JPEG XR. The intention is to determine if JPEG XR is an appropriate standard for IP based video surveillance purposes. Video surveillance, especially IP based video surveillance, currently has an increasing role in the security market. To be a good standard for surveillance, the video stream generated by the camera is required to be low bit-rate, low latency on the network and at the same time keep a high dynamic display range. The thesis start with a deep insightful study of JPEG XR encoding standard. Since the standard could have different settings,optimized settings are applied to JPEG XR encoder to fit the requirement of network video surveillance. Then, a comparative evaluation of the JPEG XR versusthe JPEG is delivered both in terms of objective and subjective way. Later, part of the JPEG XR encoder is implemented in hardware as an accelerator for further evaluation. SystemVerilog is the coding language. TSMC 40nm process library and Synopsys ASIC tool chain are used for synthesize. The throughput, area, power ofthe encoder are given and analyzed. Finally, the system integration of the JPEGXR hardware encoder to Axis ARTPEC-X SoC platform is discussed.
7

Digital rights management (DRM) - watermark encoding scheme for JPEG images

Samuel, Sindhu 12 September 2008 (has links)
The aim of this dissertation is to develop a new algorithm to embed a watermark in JPEG compressed images, using encoding methods. This encompasses the embedding of proprietary information, such as identity and authentication bitstrings, into the compressed material. This watermark encoding scheme involves combining entropy coding with homophonic coding, in order to embed a watermark in a JPEG image. Arithmetic coding was used as the entropy encoder for this scheme. It is often desired to obtain a robust digital watermarking method that does not distort the digital image, even if this implies that the image is slightly expanded in size before final compression. In this dissertation an algorithm that combines homophonic and arithmetic coding for JPEG images was developed and implemented in software. A detailed analysis of this algorithm is given and the compression (in number of bits) obtained when using the newly developed algorithm (homophonic and arithmetic coding). This research shows that homophonic coding can be used to embed a watermark in a JPEG image by using the watermark information for the selection of the homophones. The proposed algorithm can thus be viewed as a ‘key-less’ encryption technique, where an external bitstring is used as a ‘key’ and is embedded intrinsically into the message stream. The algorithm has achieved to create JPEG images with minimal distortion, with Peak Signal to Noise Ratios (PSNR) of above 35dB. The resulting increase in the entropy of the file is within the expected 2 bits per symbol. This research endeavor consequently provides a unique watermarking technique for images compressed using the JPEG standard. / Dissertation (MEng)--University of Pretoria, 2008. / Electrical, Electronic and Computer Engineering / unrestricted
8

Amélioration de codecs audio standardisés avec maintien de l'interopérabilité

Lapierre, Jimmy January 2016 (has links)
Résumé : L’audio numérique s’est déployé de façon phénoménale au cours des dernières décennies, notamment grâce à l’établissement de standards internationaux. En revanche, l’imposition de normes introduit forcément une certaine rigidité qui peut constituer un frein à l’amélioration des technologies déjà déployées et pousser vers une multiplication de nouveaux standards. Cette thèse établit que les codecs existants peuvent être davantage valorisés en améliorant leur qualité ou leur débit, même à l’intérieur du cadre rigide posé par les standards établis. Trois volets sont étudiés, soit le rehaussement à l’encodeur, au décodeur et au niveau du train binaire. Dans tous les cas, la compatibilité est préservée avec les éléments existants. Ainsi, il est démontré que le signal audio peut être amélioré au décodeur sans transmettre de nouvelles informations, qu’un encodeur peut produire un signal amélioré sans ajout au décodeur et qu’un train binaire peut être mieux optimisé pour une nouvelle application. En particulier, cette thèse démontre que même un standard déployé depuis plusieurs décennies comme le G.711 a le potentiel d’être significativement amélioré à postériori, servant même de cœur à un nouveau standard de codage par couches qui devait préserver cette compatibilité. Ensuite, les travaux menés mettent en lumière que la qualité subjective et même objective d’un décodeur AAC (Advanced Audio Coding) peut être améliorée sans l’ajout d’information supplémentaire de la part de l’encodeur. Ces résultats ouvrent la voie à davantage de recherches sur les traitements qui exploitent une connaissance des limites des modèles de codage employés. Enfin, cette thèse établit que le train binaire à débit fixe de l’AMR WB+ (Extended Adaptive Multi-Rate Wideband) peut être compressé davantage pour le cas des applications à débit variable. Cela démontre qu’il est profitable d’adapter un codec au contexte dans lequel il est employé. / Abstract : Digital audio applications have grown exponentially during the last decades, in good part because of the establishment of international standards. However, imposing such norms necessarily introduces hurdles that can impede the improvement of technologies that have already been deployed, potentially leading to a proliferation of new standards. This thesis shows that existent coders can be better exploited by improving their quality or their bitrate, even within the rigid constraints posed by established standards. Three aspects are studied, being the enhancement of the encoder, the decoder and the bit stream. In every case, the compatibility with the other elements of the existent coder is maintained. Thus, it is shown that the audio signal can be improved at the decoder without transmitting new information, that an encoder can produce an improved signal without modifying its decoder, and that a bit stream can be optimized for a new application. In particular, this thesis shows that even a standard like G.711, which has been deployed for decades, has the potential to be significantly improved after the fact. This contribution has even served as the core for a new standard embedded coder that had to maintain that compatibility. It is also shown that the subjective and objective audio quality of the AAC (Advanced Audio Coding) decoder can be improved, without adding any extra information from the encoder, by better exploiting the knowledge of the coder model’s limitations. Finally, it is shown that the fixed rate bit stream of the AMR-WB+ (Extended Adaptive Multi-Rate Wideband) can be compressed more efficiently when considering a variable bit rate scenario, showing the need to adapt a coder to its use case.

Page generated in 0.0738 seconds