• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 11
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Protein Minimization Of Human CD4 And Design Of gp120-CD4 Single Chain Immunogens

Sharma, Deepak Kumar 06 1900 (has links) (PDF)
No description available.
12

Charakterisierung der Prototyp Foamyvirus Hüllglykoprotein Rezeptorbindungsdomäne

Duda, Anja 06 July 2006 (has links)
Spumaretroviren, oder Foamyviren (FV), unterscheiden sich von Orthoretroviren durch mehrere Besonderheiten in ihrer Replikationsstrategie. Das Partikel-assoziierte Hüllglykoprotein (Env-Protein) des „Prototype Foamy Virus“ (PFV) ist im Vergleich zu anderen retroviralen Hüllglykoproteinen einzigartig. Die Koexpression des PFV Env-Proteins für die PFV-Partikelfreisetzung ist essenziell und die spezifische Funktion kann nicht von heterologen viralen Env-Proteinen übernommen werden. Das Env-Protein des PFV durchläuft eine für ein Membranglykoprotein ungewöhnliche Biosynthese. Das Env-Vorläuferprotein besitzt zu Beginn eine Typ-III-Membrantopologie, bei der der N- und der C-Terminus im Zytoplasma lokalisiert sind. Während des Transports zur Zelloberfläche wird es posttranslational durch bisher unbekannte zelluläre Proteasen in mindestens drei Untereinheiten gespalten. Das N-terminale Signalpeptid bzw. Leader-Peptid (LP) hat eine Typ-II-Membrantopologie, mit dem N-Terminus im Zytoplasma und dem C-Terminus im Lumen, wohingegen die Transmembran (TM)-Untereinheit eine Typ-IMembrantopologie besitzt, bei der der N-Terminus im Lumen und der C-Terminus im Zytoplasma lokalisiert sind. Die interne Oberflächen (SU)-Untereinheit assoziiert vermutlich im Lumen mit der extrazellulären Domäne der TM-Untereinheit. Im Rahmen dieser Arbeit wurde der Beweis erbracht, dass Furin oder Furin-ähnliche Proteasen und nicht der Signalpeptidase-Komplex für beide proteolytischen Spaltungen verantwortlich sind. Durch die N-terminale Sequenzierung der SU- und der TM-Untereinheit eines aufgereinigten PFV Env-Immunoadhäsionsproteins wurden N-terminal von beiden Spaltstellen Furin- Konsensussequenzen identifiziert. Mutationsanalysen von zwei sich in diesem Bereich überlappenden minimalen Furin-Konsensussequenzen an der PFV LP/SU-Spaltstelle im wildtypischen PFV Env-Protein bestätigten die Ergebnisse der N-terminalen Sequenzierung und bewiesen, dass nur die erste Spaltstelle genutzt wird. Obwohl diese Mutanten aufgrund geringerer Partikelfreisetzung einen signifikanten Verlust der Infektiosität zeigten, wurde keine Korrelation zur Inhibierung der Spaltung beobachtet, da andere Mutanten mit normaler LP/SU-Spaltung einen ähnlichen Defekt besaßen. Virale Env-Proteine initiieren den Eintritt membranumhüllter Viren in die Wirtszelle durch die Bindung an zelluläre Rezeptoren. Dabei führen Konformationsänderungen in den Env- Proteinen zum Verschmelzen der Virusmembran mit der Zellmembran und weiterhin zur Aufnahme des Kapsids in das Zytoplasma der Wirtszelle. Die foamyviralen Env-Proteine sind in dieser Hinsicht keine Ausnahme und vermitteln die Anheftung an die Wirtszelle durch die Bindung an den bisher unbekannten zellulären Rezeptor. Der zelluläre foamyvirale Rezeptor ist vermutlich ein ubiquitäres Molekül, denn bisher konnte keine Zelllinie identifiziert werden, die gegen FV-Infektionen resistent ist. Bislang existieren nur sehr wenig strukturelle und funktionelle Informationen der extrazellulären Domänen des PFV Env-Proteins. Deshalb wurde im Hauptteil dieser Arbeit die PFV Env-Rezeptorbindungsdomäne (RBD) charakterisiert. Hierfür wurden rekombinante PFV Env-Immunoadhäsionsproteine verwendet und deren Bindungskapazitäten an Zielzellen in der durchflusszytometrischen Analyse bestimmt. Untersuchungen zeigten, dass sowohl die extrazelluläre Domäne der C-terminalen TM-Untereinheit als auch der Transport der Immunoadhäsionsproteine durch das spezifische PFV Env LP zum sekretorischen Weg für die Bindung an Zielzellen entbehrlich sind und ließen vermuten, dass die PFV Env-RBD innerhalb der SU-Untereinheit lokalisiert ist. N- und C-terminale Deletionsanalysen der PFV Env SU-Untereinheit enthüllten eine minimale kontinuierliche RBD von AS 225 bis 555. Interne Deletionen im PFV Env-Protein von AS 397 bis 483 wurden im Gegensatz zu deletierten Regionen von AS 262 bis 300 und AS 342 bis 396 ohne signifikanten Einfluss auf die Wirtszellbindung in Immunoadhäsionsproteinen toleriert. Die Analyse der Immunoadhäsionsproteine mit einzelnen substituierten Cysteinen in der PFV Env SU-Untereinheit zeigten, dass nur die Immunoadhäsionsproteine, die in der nicht essenziellen Region von AS 397 bis 483 lokalisierte Cysteine ersetzt hatten, eine Restbindungskapazität behielten. Interessanterweise zeigte die Analyse von verschiedenen N-Glykosylierungsmutanten eine bedeutende Rolle der Kohlenhydratkette an Position N391 im PFV Env-Protein entweder hinsichtlich der direkten Interaktion mit dem zellulären Rezeptor oder für die korrekte Faltung der PFV Env-RBD. Diese Ergebnisse weisen darauf hin, dass ein diskontinuierliches Sequenzmotiv von AS 225 bis 396 und AS 484 bis 555 für die Bildung der PFV Env-RBD essenziell ist und die darin lokalisierte potenzielle achte N-Glykosylierungsstelle eine entscheidende Rolle bei der Wirtszellbindung spielt. / Spumaretroviruses or foamy viruses (FVs) use a replication pathway with features distinctive from orthoretroviruses. The particle-associated envelope (Env) glycoprotein of prototype foamy virus (PFV) is unique compared to other retroviral envelope proteins since its coexpression is strictly required for the FV particle release process and its function cannot be replaced by heterologous viral glycoproteins. The PFV Env glycoprotein shows a highly unusual biosynthesis. Its precursor protein has a type III membrane topology with both the N-and C-terminus located in the cytoplasm. During its transport to the cell surface, it is posttranslationally processed by yet-unidentified cellular proteases into at least three subunits. The N-terminal signal or leader peptide (LP) has a type II membrane topology, whereas the C-terminal transmembrane (TM) subunit has a type I membrane topology. The internal surface (SU) subunit presumably associates with extracellular domains of TM on the luminal side. Here we provide strong evidence that furin itself or furin-like proteases and not the signal peptidase complex are responsible for both processing events. N-terminal protein sequencing of the SU and TM subunits of purified PFV Env-immunoglobulin immunoadhesin identified furin consensus sequences upstream of both cleavage sites. Mutagenesis analysis of two overlapping minimal furin consensus sequences at the PFV LP/SU cleavage site in the wild-type protein confirmed the sequencing data and demonstrated utilization of only the first site. Although these mutants displayed a significant loss in infectivity as a result of reduced particle release, no correlation to processing inhibition was observed, since another mutant having normal LP/SU processing had a similar defect. Viral Env proteins initiate entry of membrane enveloped viruses into cells by binding to cell surface receptors followed by conformational changes leading to membrane fusion and delivery of the genome containing viral capsid to the cytoplasm. The Env glycoproteins of FVs are no exception and mediate attachment to host cells through binding to an yet unknown ubiquitous cellular receptor molecule because no cell type is currently known that is resistant to FV entry. Little structural and functional information on the extracellular domains of PFV Env is available. In this study we characterized the PFV Env receptor-binding-domain (RBD) by flow-cytometric analysis of recombinant PFV Env immunoadhesin binding to target cells. Analysis showed that the extracellular domains of the C-terminal TM subunit as well as targeting of the recombinant immunoadhesins by the cognate LP to the secretory pathway were dispensable for target cell binding suggesting that the PFV Env RBD is contained within the SU subunit. N- and C- terminal deletion analysis of the SU domain revealed an minimal continuous RBD spanning aa 225-555, however internal deletions covering the region from aa 397-483, but not aa 262-300 or aa 342-396, were tolerated without significant influence on host cell binding. Analysis of individual cysteine point mutants in PFV Env SU revealed that only most of those located in the non-essential region from aa 397-483 retained residual binding activity. Interestingly, analysis of various N-glycosylation site mutants suggests an important role of the carbohydrate chain attached to N391 either for direct interaction with the cellular receptor or for correct folding of the PFV Env RBD. Taken together these results suggest that a bipartite sequence motif spanning aa 225-396 and aa 484-555 is essential for formation of the PFV Env RBD, with N-glycosylation site 8 playing a crucial role for host cell binding.
13

Determinanty fúzogenicity Syncytinu-1, buněčného glykoproteinu retrovirového původu / Determinants of fusogenicity of Syncytin-1, cellular glycoprotein of retroviral origin

Trávníček, Martin January 2021 (has links)
Syncytin-1 is an endogenous retroviral envelope glycoprotein specifically expressed in human placenta, where the protein was adopted for its physiological function. After interaction with specific receptors, transmembrane proteins ASCT1 and ASCT2, Syncytin-1 initiates cell-cell fusion leading to formation of multinucleated syncytiotrophoblast, which is essential for feto-maternal nutrients exchange. In this diploma thesis a new cell-cell fusion quantification assay was implemented for characterisation of Syncytin-1 fusion determinants. The assay uses Syncytin-1 and ASCT2 expressed separately with fragments of luciferase in heterologous cell-culture system. The assay enables to specifically quantify cell-cell fusions based on activity of reconstituted luciferase reporter. This study discovered new facts about the role of intracytoplasmic tail of Syncytin-1 in the process of the cell- cell fusion. This specific part of protein contains a tandem motif sensitive to changes in amino acid sequence that led to loss of fusogenic potential of Syncytin-1. It was further confirmed, that the protein Suppressyn works as an inhibitor of cell-cell fusions initiated by Syncytin-1. Suppressyn however does not bind to receptors of Syncytin-1 and the mechanism of its inhibition remains unsolved. Finally, it was demonstrated...
14

Impact du petit inhibiteur temsavir sur la conformation des glycoprotéines d’enveloppe du VIH-1

Boutin, Marianne 05 1900 (has links)
Un obstacle important dans l’éradication du virus de l’immunodéfience humaine (VIH-1) est l’établissement de réservoirs viraux où le virus reste à l’état latent ainsi que l’absence de vaccin efficace. Bien que les molécules antivirales actuelles permettent d’augmenter l’espérance de vie des personnes vivant avec le VIH-1 (PLWH) ainsi que de diminuer la réplication virale chez cellesci, elles ne contribuent pas à l’élimination de ces réservoirs. La hausse de résistance envers ces molécules inhibitrices nécessite le développement constant de nouvelles molécules. L’une d’entre elles, temsavir (BMS-626529), est un nouvel inhibiteur d’attachement approuvé par la FDA depuis 2020. Sa cible, la glycoprotéine d’enveloppe (Env), est le seul antigène viral présent à la surface des cellules infectées et des virions, représentant donc la cible idéale des anticorps. L’Env mature se trouve sous forme d’hétérodimère (gp120 et gp41) suite au clivage de son précurseur gp160. Temsavir lie sous la boucle β20-β21 de la gp120 et prévient donc, par compétition, l’interaction entre l’Env et le récepteur CD4 de l’hôte. En plus de son rôle en tant qu’inhibiteur d’attachement, temsavir permet de stabiliser le trimère dans sa conformation dite «fermée». Un ancien analogue de temsavir, BMS-806, a montré réduire l’addition de glycans ainsi que de diminuer le clivage du précurseur gp160. Nos études démontrent que temsavir possède également un impact sur ces mécanismes impliqués dans la maturation et la flexibilité de l’Env de plusieurs souches du VIH-1. De ce fait, nous avons investigué l’effet de cette altération sur la conformation des différentes Env. Nos observations montrent que l’effet de temsavir sur le clivage protéolytique est associé à une diminution de la reconnaissance de l’Env par des anticorps ciblant différentes régions de celle-ci. Cette modification de la reconnaissance de l’Env est également associée à l’efficacité de la réponse cytotoxique cellulaire dépendante des anticorps (ADCC) à éliminer les cellules infectées. Les résultats présentés dans ce mémoire, notamment l’effet de temsavir sur la conformation de l’Env, devrait être considéré lors du développement d’immunothérapies ciblant le réservoir viral. / An important obstacle in the eradication of the human immunodeficiency virus (HIV-1) is the establishment of viral reservoirs where the virus remains in a latent state and the absence of a potent vaccine. Although current antiretroviral molecules increase the life expectancy of people living with HIV-1 (PLWH) as well as reduce viral replication, they do not contribute to the elimination of these reservoirs. Also, the increase in drugs resistances towards these inhibitory molecules requires the constant development of new molecules. One of them, temsavir (BMS-626529), is a new attachment inhibitor approved by the FDA since 2020. Its target, the envelope glycoprotein (Env), is the only viral antigen present at the surface of infected cells and virions and thus, is also the main target of antibodies. This mature Env consists of three gp120-gp41 heterodimers after the proteolytic cleavage of its gp160 precursor. Temsavir binds under the β20-β21 loop of gp120 and prevents the interaction between Env and the host CD4 receptor. In addition to its role as an attachment inhibitor, temsavir stabilizes the trimer in its "closed" conformation. A previous analog of temsavir, BMS-806, has been shown to affect the addition of glycans as well as the cleavage of the gp160 precursor. Our studies demonstrate that temsavir also has an impact on these mechanisms involved in the maturation and flexibility of Env of several strains of HIV-1. Therefore, we investigated the effect of this alteration on the conformation of different Env. Our observations showed that the effect of temsavir on proteolytic cleavage is associated with a decrease in Env recognition by antibodies targeting different regions of Env. This modification in Env recognition also appears to be associated with the efficacy of antibody to mediate potent antibody-dependent cellular cytotoxicity (ADCC) against infected-cells. The results presented in this master thesis, should be considered when developing immunotherapies aimed at targeting the viral reservoir in Fostemsavir-treated individuals.
15

Impact of SR-BI and CD81 on Hepatitis C virus entry and evasion

Zahid, Muhammad Nauman 27 April 2012 (has links) (PDF)
Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. In the first part of my PhD, we aimed to further characterize the role of scavenger receptor class B type I (SR-BI) in HCV infection. While the SR-BI determinants involved in HCV binding have been partially characterized, the post-binding function of SR-BI remains remained largely unknown. To further explore the role of HCV-SR-BI interaction during HCV infection, we generated a novel class of anti-SR-BI monoclonal antibodies inhibiting HCV infection. We demonstrated that human SR-BI plays a dual role in the HCV entry process during both binding and post-binding steps. Targeting the post-binding function of SR-BI thus represents an interesting antiviral strategy against HCV infection. In the second part of my PhD, we aimed to characterize the molecular mechanisms underlying HCV re-infection of the graft after liver transplantation (LT). We identified threeadaptive mutations in envelope glycoprotein E2 mediating enhanced entry and evasion of a highly infectious escape variant. These mutations markedly modulated CD81 receptor dependency resulting in enhanced viral entry. The identification of these mechanisms advances our understanding of the pathogenesis of HCV infection and paves the way for the development of novel antiviral strategies and vaccines.
16

Évaluation de stratégies pour l'optimisation d'un vaccin à ADN contre le virus de la diarrhée virale bovine (BVDV)

Brunelle, Mélanie January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
17

Évaluation de stratégies pour l'optimisation d'un vaccin à ADN contre le virus de la diarrhée virale bovine (BVDV)

Brunelle, Mélanie January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
18

Protein Engineering of HIV-1 Env and Human CD4

Saha, Piyali January 2013 (has links) (PDF)
Since, its discovery over three decades ago, HIV has wrecked havoc worldwide. According to the UNAIDS report 2011, at present 34 million people is living with HIV and AIDS vaccine with broadly neutralizing activity still remains elusive. The envelope glycoproteins on the virion surface, is the most accessible component to the host immune system and therefore is targeted for vaccine design. However, the virus has employed various strategies to avoid the host immune response. The extremely high rate of mutations, extensive glycosylation of the envelope glycoprotein, conformational flexibility of the envelope, has made all the efforts aimed to design a broadly neutralizing immunogen futile. In Chapter1, we briefly discuss about the structural and genomic organization of the HIV-1 along with various strategies the virus has employed to evade the immune system. We also present the progress and failures encountered in the past three decades, on the way to design protective HIV vaccine and inhibitors. On the host cell surface, HIV-1 glycoprotein gp120 binds to the cell surface receptor CD4 and leads to the fusion of viral and host cellular membranes. CD4 is present on the surface of T-lymphocytes. It consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1−D4. sCD4 has been used as an entry inhibitor against HIV-1. However, this molecule could not neutralize primary isolates of the virus. Previously, from our lab, we had reported the design and characterization of a construct consisting of the first two domains of CD4 (CD4D12), that binds gp120 with similar affinity as soluble 4-domain CD4 (sCD4). However, the first domain alone (CD4D1) was previously shown to be largely unfolded and had 3-fold weaker affinity for gp120 when compared to sCD4 [Sharma, D.; et al. (2005) Biochemistry 44, 16192−16202]. In Chapter 2, we describe the design and characterization of three single-site mutants of CD4D12 (G6A, L51I, and V86L) and one multisite mutant of CD4D1 (G6A/L51I/L5K/F98T). G6A, L51I, and V86L are cavity-filling mutations while L5K and F98T are surface mutations which were introduced to minimize the aggregation of CD4D1 upon removal of the second domain. All the mutations in CD4D12 increased the stability and yield of the protein relative to the wild-type protein. The mutant CD4D1 (CD4D1a) with the 4 mutations was folded and more stable compared to the original CD4D1, but both bound gp120 with comparable affinity. In in vitro neutralization assays, both CD4D1a and G6A-CD4D12 were able to neutralize diverse HIV-1 viruses with similar IC50s as 4-domain CD4. These stabilized derivatives of human CD4 are useful starting points for the design of other more complex viral entry inhibitors. Most HIV-1 broadly neutralizing antibodies are directed against the gp120 subunit of the env surface protein. Native env consists of a trimer of gp120−gp41 heterodimers, and in contrast to monomeric gp120, preferentially binds CD4 binding site (CD4bs)-directed neutralizing antibodies over non-neutralizing ones. One group of cryo-electron tomography studies have suggested that the V1V2 loop regions of gp120 are located close to the trimer interface and the other group claimed that the V1V2 loop region is far from the apex of the trimer. To further investigate the position of the V1V2 region, in the native envelope trimer, in Chapter 3, we describe the design and characterization of cyclically permuted variants of gp120 with and without the h-CMP and SUMO2a trimerization domains inserted into the V1V2 loop. h-CMP-V1cyc is one such variant in which residues 153 and 142 are the N- and C-terminal residues, respectively, of cyclically permuted gp120 and h-CMP is fused to the N-terminus. This molecule forms a trimer under native conditions and binds CD4 and the neutralizing CD4bs antibodies b12 with significantly higher affinity than wild-type gp120. It binds non-neutralizing CD4bs antibody F105 with lower affinity than gp120. A similar derivative, h-CMP-V1cyc1, bound the V1V2 loop-directed broadly neutralizing antibodies PG9 and PG16 with ~15-fold higher affinity than wild-type JRCSF gp120. These cyclic permutants of gp120 are properly folded and are potential immunogens. The data also support env models in which the V1V2 loops are proximal to the trimer interface. HIV-1 envelope (env) protein gp120 has approximately 25 glycosylation sites of which ~4 are located in the inner domain, ~7-8 in the V1/V2 and V3 variable loops and the rest in the outer domain (OD) of gp120. These glycans shield env from recognition by the host immune system and are believed to be indispensable for proper folding of gp120 and viral infectivity. However, there is no detailed study that describes whether a particular potential n-linked glycan is indispensable for folding of gp120.Therefore, in Chapter 4, using rationally designed mutations and yeast surface display (YSD), we show that glycosylation is not essential for the correct in vivo folding of OD alone or OD in the context of core gp120. Following randomization of the remaining four glycosylation sites, we isolated a core gp120 mutant, which contained a single inner domain glycan and retained yeast surface expression and broadly neutralizing antibody (bNAb) binding. Thus demonstrates that most gp120 glycans are dispensable for folding in the absence of gp41. However in the context of gp160, we show that all core gp120 glycans are dispensable for folding, recognition of bNAbs and for viral infectivity. We also show that deglycosylated molecules can serve as a starting point to re-introduce epitopes for specific glycan dependent bNAbs. Several of these constructs will also be useful for epitope mapping and env structural characterization. Glycosylation of env is known to inhibit binding to germline precursors of known bNAbs. Hence the present results inform immunogen design, clarify the role of glycosylation in gp120 folding and illustrate general methodology for design of glycan free, folded protein derivatives. On the virion surface env glycoproteins gp120 and gp41 interact via non-covalent interactions and form trimers of heterodimers. Upon binding cell surface receptor CD4 and co-receptor CCR5/CXCR4, gp120 and gp41 undergo a lot of conformational changes, which ultimately lead to the fusion of viral and cellular membranes by formation of six-helix bundle in gp41. High resolution structural information is available for core gp120 and post-fusion six-helix bundle conformation of gp41. However, the structural information about the native gp120:gp41 interface in the native trimer is lacking. In Chapter 5, we describe the design and characterization of various single chain derivatives of gp120 inner doamin and gp41. Among the designed constructs, gp41-id2b is folded but is a mixture of dimer and monomer under native conditions. To facilitate, trimer formation, two trimerization domains (h-CMP and Foldon) were individually fused to the N-terminus of gp41-id2b to generate h-CMP-gp41-id2b and Foldon-gp41-id2b. Although, these molecules were proteolytically more stable than gp41-id2b, they did not form trimer under native conditions. All the single chain derivatives were designed based on the crystal structure of gp120, which was devoid of C1 and C5 domains (PDBID 1G9M). A new set of constructs to mimic the native gp120:gp41 interface will be designed and characterized based on the recently solved crystal structure of gp120 with the C1 and C5 domains (PDBID 3JWD and 3JWO). Helix-helix interactions are fundamental to many biological signals and systems, found in homo- or hetero-multimerization of signaling molecules as well as in the process of virus entry into the host. In HIV, virus-host membrane fusion during infection is mediated by the formation of six helix bundle (6HB) from homotrimers of gp41, from which a number of synthetic peptides have been derived as antagonists of virus entry. Yeast surface two-hybrid (YS2H) system is a platform, which is designed to detect protein-protein interactions occurring through a secretory pathway. In Chapter 6, we describe the use of aYS2H system, to reconstitute 6HB complex on the yeast surface and delineate the residues influencing homo-oligomeric and hetero-oligomeric coiled-coil interactions. Hence, we present YS2H as a platform for facile characterization of hetero-oligomeric interactions and design of antagonistic peptides for inhibition of HIV and many other enveloped viruses relying on membrane fusion for infection, as well as cellular signaling events triggered by hetero-oligomeric coiled coils. However, using this YS2H platform, the native hetero-oligomeric complex of gp120 and gp41 could not be captured. In Appendix 1, we report cloning, expression and purification of PΔGgp120 and ΔGgp120 from methylotrophic yeast Pichia pastoris. PΔGgp120 was purified as a secreted protein. However, in electrophoretic analyses the molecule ran as a heterogeneous smear. Further optimization of the purification protocol and biophysical characterizations of this molecule will be performed in future. In Appendix 2, gp41 variants were expressed on the yeast cell surface as a C-terminally fused protein and its interaction with externally added gp120 was monitored by FACS. The surface expression of the gp41 constructs was poor and they did not show any interaction with gp120.
19

Replikační bloky viru Rousova sarkomu v savčích buňkách / Rous sarcoma virus replication blocks in mammalian cells

Koslová, Anna January 2017 (has links)
One of the important tasks of virology and immunology is to explore the species- and cell-barriers preventing virus horizontal transmission and reveal the ways how viruses overcome these barriers and "adapt" to different species. This work is based on a well- established retroviral model - avian Rous sarcoma virus (RSV) and studies virus replication blocks in mammalian cells at both pre- and post-integration level. Interaction of the viral envelope glycoprotein (Env) with a specific cellular receptor mediates virus entry into cells. Although mammalian orthologues of specific chicken receptors do not support RSV entry, it was observed that some RSV strains are able to enter mammalian cells. Several RSV-transformed rodent cells lines were described and analysis of provirus H20- RSV in one these cells lines (hamster H-20 tumor cell line) showed multiple mutations including two crucial amino acid substitutions in different regions of Env. Substitutions D32G and L378S confer virus transmission to hamster, human and also chicken cells lacking the appropriate receptor. Altered conformation of H20-RSV Env is similar to a receptor-primed (activated) state of Env. This observation indicates that virus can circumvent the need of original cell receptor because of spontaneous Env activation caused by single...

Page generated in 0.0478 seconds