• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 2
  • 2
  • Tagged with
  • 32
  • 32
  • 32
  • 10
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dust emissions from undisturbed and disturbed soils: effects of off-road military vehicles

Xu, Youjie January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Ronaldo G. Maghirang / Military training lands can be significant sources of fugitive dust emissions due to wind erosion. This study was conducted to determine dust emission potential of soils due to wind erosion as affected by off-road military vehicle disturbance. Multi-pass traffic experiments using two types of vehicles (i.e., wheeled and tracked) were conducted on six soil textures at four military training facilities: Fort Riley, KS; Fort Benning, GA; Yakima Training Center, WA; and White Sands Missile Range (WSMR), NM. Prior to and after the preselected number of vehicle passes, soil samples at three locations were collected with minimum disturbance into trays. Adjacent to the location where tray samples were collected, a Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to measure dust emission potential. The tray samples were tested in a laboratory wind tunnel (with sand abrader) for dust emission potential using a GRIMM aerosol spectrometer and gravimetric method with filters. Comparison of the PI-SWERL (with DustTrak™ dust monitor) and wind tunnel (with GRIMM aerosol spectrometer) measurement results showed significant difference in measured values but high correlation, particularly for soils with high sand content. Wind tunnel tests results showed that sampling locations significantly affected dust emissions for the tracked vehicles but not for the light-wheeled and heavy-wheeled vehicles. Also, soil texture, number of vehicle passes, and vehicle type significantly affected dust emissions. For the light-wheeled vehicles, dust emissions increased as the number of vehicle passes increased. From undisturbed conditions to 10 vehicle passes, there was a significant (P<0.05) increase in dust emissions (297%) on average for all light-wheeled vehicle tests. From 10 to 25 passes and 25 to 50 passes, an additional 52% and 62% increments were observed. For the tracked vehicle, for the straight section sampling location, dust emission increased as the number of vehicle passes increased. However, for the curve section, dust emissions at any level of pass were significantly higher than initial condition; beyond the first pass, no significant increase was observed.
12

Bleed air oil contamination particulate characterization

Roth, Jake January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Mohammad H. Hosni / Byron W. Jones / Gas turbine engine oil is contaminating the bleed air of an aircraft with enough frequency and intensity that health concerns are of public interest. While previous work measured micro particles and used only a simulator, this work mainly consists of measurements in the nanoparticle and ultrafine range using both the simulator and two different gas turbine engines. No previous research has been conducted using working jet engines to simulate a bleed air system and characterize the oil particulate contamination. Oil was injected into a bleed air simulator and an Allison 250 CC18 turbine engine in order to observe the particle size distributions resulting from thermal degradation and was measured with three particle sizing counters and an FTIR. The aerosol size distributions are given for various temperature and pressure ranges consistent with the process conditions associated with the bleed air in a commercial aircraft. Particle sizes of approximately 80nm to 100nm were observed at temperatures over 200°C while particles similar to injection distributions and smaller than measureable size were observed at lower power settings. Temperature is thought to be the controlling factor affecting particle size above 200°C while blade shear is likely the dominant factor for lower temperatures. The bleed air simulator produced results similar to the gas turbine engine results at higher temperatures, but did not replicate the size characteristics at lower temperatures. The observed particles are ultrafine and situated in the size range that may impact health safety more than larger particles.
13

Development of an improved thermal model of the human body and an experimental investigation of heat transfer from a moving cylinder

Sun, Xiaoyang January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Steve Eckels / A new human thermal model was developed to predict the thermal responses of human body in various environments. The new model was based on Smith's model, which employed finite element method to discretize the human body. The body parts in our new model were not limited to the cylindrical shape as in Smith's model, but subjected to arbitrary shapes. Therefore, the new model is capable of dealing with more complicated shapes of the human body. Steady-state and transient temperatures of fifteen body parts were calculated for three environments: cold, neutral, and warm. Our results were compared with the data from Zhang's experimental research on the human subjects. For all three conditions, our results showed better agreement with experimental data than Smith's results did. The maximal deviation is 1ºC for neutral and warm condition; for cold condition, a maximal deviation of 3.5ºC is reported at hand. The comparison indicated that our new model could provide a more accurate prediction on the body temperatures. Follow-up experiments were conducted to investigate the local and overall heat transfer from a moving cylinder in air flow. This study was expected to provide the local convective heat transfer coefficients of the human body to our new human thermal model to simulate moving humans. An experiment of a stationary cylinder in cross flow was performed to verify the accuracy and consistency of our system. Then, the experiment of a transverse oscillating cylinder in cross flow was conducted, with a oscillation frequency of 0.15 and Strouhal number of 0.3 to 1.5, depending on wind velocity. The overall Nusselt number (Nu) of the oscillating cylinder remained unaffected, compared to the stationary cylinder. This observation showed agreement with previous studies. The pivot experiment was performed to investigate swinging movement of human arms. The cylinder was positioned axially in cross flow, and reciprocated on a fixed point between horizontal and vertical positions under three wind speeds and two oscillating frequencies. The results showed that the overall Nu was between the Nu at horizontal and vertical positions in stationary state. A correlation was presented to predict the Nu of pivotal moving cylinder by using stationary Nu at horizontal and vertical positions. The correlation was proved to be valid ( error less than 5%) within the range of conditions in our experiment.
14

Fugitive dust emissions from off-road vehicle maneuvers on military training lands

Meeks, Jeremy C. January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Ronaldo G. Maghirang / Military installations in the United States may be large sources of fugitive dust emissions. Off-road vehicle training can contribute to air quality degradation resulting from increased wind erosion events as a result of soil disruption; however, limited information exists regarding the impacts of off-road vehicle maneuvering. This study was conducted to determine the effects of soil texture and intensity of training with off-road vehicles on fugitive dust emission potential due to wind erosion at military training installations. Multi-pass trafficking experiments, involving wheeled and tracked military vehicles (i.e., M1A1 Abrams tank, M925A1 water tanker and various HMMWV models), were conducted at three military training facilities with different climate and soil texture (i.e., Fort Riley, KS; Fort Benning, GA; and Yakima Training Center, WA). Dust emissions were measured on site using a Portable In-Situ Wind Erosion Laboratory (PI-SWERL) coupled with a DustTrak™ dust monitor. In addition, a top layer of soil was collected in trays and tested in a laboratory wind tunnel for dust emission potential. In wind tunnel testing, the amount of emitted dust was measured using glass-fiber filters through high-volume samplers. Also, the particle size distribution and concentration of the emitted dust were measured using a GRIMM aerosol spectrometer. Comparison of the PI-SWERL (with DustTrak™ dust monitor) and wind tunnel test (with GRIMM aerosol spectrometer) results showed significant difference and little correlation. Also, comparison of the filter and GRIMM aerosol spectrometer data showed significant difference but high correlation. The dust emission potential (as measured with the GRIMM spectrometer) was significantly influenced by soil texture, vehicle type and number of passes. For the light-wheeled vehicle, total dust emissions increased from 66 mg m-2 for undisturbed soil to 304 mg m-2 (357%) and 643 mg m-2 (868%) for 10 and 50 passes, respectively. For the tracked vehicle, an average increase in total dust emission of 569% was observed between undisturbed conditions and 1 pass, with no significant increase in emissions potential beyond 1 pass. For the heavy-wheeled vehicle, emissions increased from 75 mg m-2 for undisturbed soil to 1,652 mg m-2 (1,369%) and 4,023 mg m-2 (5,276%) for 10 and 20 passes, respectively. Soil texture also played an important role in dust emission potential. For all treatment effects, there was a 1,369% difference in emissions between silty clay loam soil and loamy sand soil.
15

Developing short-span alternatives to reinforced concrete box culvert structures in Kansas

Handke, John Michael January 1900 (has links)
Master of Science / Department of Civil Engineering / Robert J. Peterman / Concrete box culvert floor slabs are known to have detrimental effects on river and stream hydraulics. Consequences include an aquatic environment less friendly to the passage of fish and other organisms. This has prompted environmental regulations restricting construction of traditional, four-sided box culvert structures in rivers and streams populated by protected species. The box culvert standard currently used by the Kansas Department of Transportation (KDOT) is likely to receive increased scrutiny from federal and state environmental regulators in the near future. Additionally, multiple-cell box culverts present a maintenance challenge, since passing driftwood and debris are frequently caught in the barrels and around cell walls. As more structures reach the end of their design lives, new solutions must be developed to facilitate a more suitable replacement. Since construction can cause significant delays to the traveling public, systems and techniques which accelerate the construction process should also be considered. This thesis documents development of a single-span replacement system for box culverts in the state of Kansas. Solutions were found using either a flab slab or the center span of the KDOT three-span, haunched-slab bridge standard. In both cases, the concrete superstructure is connected monolithically with a set of abutment walls, which sit on piling. The system provides an undisturbed, natural channel bottom, satisfying environmental regulations. Important structural, construction, maintenance, and economic criteria considered during the planning stages of bridge design are discussed. While both superstructural systems were found to perform acceptably, the haunched section was chosen for preliminary design. Rationale for selection of this system is explained. Structural modeling, analysis, and design data are presented to demonstrate viability of the system for spans ranging from 32 to 72 feet. The new system is expected to meet KDOT’s needs for structural, environmental, and hydraulic performance, as well as long-term durability. Another option involving accelerated bridge construction (ABC) practices is discussed.
16

Analysis of energy gradients and sediment loads occurring in the Irish Creek Watershed located in northeast Kansas

Sullivan, Justine Danielle January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Philip Barnes / Sediment is a large pollutant concern for the United States and is a major impairment source in water bodies (MARC 2013). Rivers and streams assessed in Kansas resulted in 87.8% being considered impaired, as well as 97.8% of the assessed lakes, reservoirs, and ponds (EPA 2012d). Tuttle Creek Reservoir is filling with sediment faster than any other federal reservoir in the region. Due to the importance of Tuttle Creek Reservoir, limiting the water impairments has been made a priority. The tributaries feeding the reservoir are all considered impaired, and TMDLs should be developed to limit the amount of sediment allowed in the water body. This study focuses on the stream energy and sediment loads occurring in a watershed in northeast Kansas over a six year period. When bankfull conditions occur, significant amounts of work are performed on the stream and excessive erosive forces may occur. The estimated bankfull discharge was 6.5 m3/s, and this event occurred every year except in 2012. At the same location the bankfull discharge was estimated, automated and grab water samples were collected and stream power was calculated. The samples were analyzed for total suspended sediment, total nitrogen, and total phosphorus, and the total annual loads were estimated. The total sediment load occurring in the watershed was 10,298,283 kilograms. The nutrient loads occurring were 78,213 kg of TN and 22,625 kg TP. Elevations were measured at equal intervals in a sub-watershed. Energy gradients were calculated, and it was observed that many of the gradients could create favorable conditions for sediment erosion to occur. The stream power estimate was 26.85 kg/m/s. At this stage larger sediment particles and load could be transported. A gully formed by overland flow entering the stream was also measured to estimate amounts of sediment being contributed from gully side conveyances within the watershed. The estimated sediment loss from the gully was 1,693,899 kg. Results of this study could help improve water quality and help quantify the amount of sediment being carried from the watershed and streambanks, so BMPs and other design features may be implemented.
17

GIS methods to implement sediment best management practices and locate ephemeral gullies

Daggupati, Naga Prasad January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Kyle Douglas-Mankin / Soil erosion is one of the most important of today’s global environmental problems. Over the past few decades, soil conservation practices were implemented to reduce soil erosion in the United States. However, excessive sediment still remains among the most prevalent water quality problems. Agricultural fields and in particular ephemeral gullies (EGs) are considered to be a major contributor of sediment. The overall goal of this study was to improve modeling utility to identify and quantify sources of sediment. Specific objectives were: (1) to develop and demonstrate a method of field-scale targeting using Soil and Water Assessment Tool (SWAT) and to use this method as a targeted, flexible approach to pay explicitly for sediment-yield reductions; (2) to evaluate topographic index models (Slope Area [SA], Compound Topographic Index [CTI], Slope Area Power [SAP] and Wetness Topographic Index [WTI]) and a physical-based model (Overland Flow Turbulent [OFT]) in predicting spatial EG location and lengths. Black Kettle Creek watershed was the focus of an innovative project to pay for modeled field sediment reductions. An Arc-Geographical Information System (GIS) tool bar was developed that post processed SWAT hydrologic response unit output to field boundaries and prepared maps of high-priority fields by sediment, total nitrogen, and total phosphorus and was demonstrated to be useful for field-scale targeting. Calibrated SWAT model was used to establish baseline sediment yields. Various Best Management Practices (BMPs) were simulated and payments to implement each BMP for a given field were calculated. This study helped to guide determination of appropriate farmer support payments and quantified the important influence of BMP type and site-specific conditions for use in targeting conservation practice funding to achieve maximum soil-loss reductions per dollar spent. Extreme care should be used in selecting the source of spatial model input data when using SWAT for field-level targeting. Automated geospatial models were developed in a GIS environment to spatially locate and derive length of EGs using topographic index and physical based models. EG predictions were better for the SA model among the four topographic index models tested. Individual calibration of topographic index model threshold for each application site was needed. An OFT model (physical based model), which utilized topography, precipitation, soil, landuse/landcover and SWAT-based runoff estimates, did not need individual site calibration, and may have broader applicability than empirical based models.
18

A New Technology for the Anaerobic Digestion of Organic Waste

Guilford, Nigel 19 January 2010 (has links)
The development and patenting of a new technology for the anaerobic digestion of solid waste is described. The design basis is explained and justified by extensive reference to the literature. The technology was specifically designed to be versatile, robust and affordable and is directly derived from other proven processes for organic waste management. The ways in which environmental regulations directly affect the development and commercialization of organic waste processing technologies are described. The great differences in regulations between Europe and North America are analyzed to explain why anaerobic digestion is common in Europe and rare in North America and why this is the result of waste management economics which are driven by these regulations. The new technology is shown to be competitive in the Province of Ontario in particular and North America in general; a detailed financial analysis and comparison with European technologies is provided in support of this conclusion.
19

A New Technology for the Anaerobic Digestion of Organic Waste

Guilford, Nigel 19 January 2010 (has links)
The development and patenting of a new technology for the anaerobic digestion of solid waste is described. The design basis is explained and justified by extensive reference to the literature. The technology was specifically designed to be versatile, robust and affordable and is directly derived from other proven processes for organic waste management. The ways in which environmental regulations directly affect the development and commercialization of organic waste processing technologies are described. The great differences in regulations between Europe and North America are analyzed to explain why anaerobic digestion is common in Europe and rare in North America and why this is the result of waste management economics which are driven by these regulations. The new technology is shown to be competitive in the Province of Ontario in particular and North America in general; a detailed financial analysis and comparison with European technologies is provided in support of this conclusion.
20

Assessment of ephemeral gully erosion using topographic and hydrologically based models in Central Kansas

Sekaluvu, Lawrence January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Aleksey Sheshukov / The global requirements for food and agricultural products have increased enormously in recent years mainly due to increase in global population. More land is brought under human development and cultivation including marginal lands that are susceptible to degradation processes of erosion, waterlogging, and depletion of organic matter. The resulting effects include; deprivation of the roles performed by the environment, high costs of water treatment, and sedimentation of water reservoirs. This study aims at assessment of ephemeral gully (EG) erosion using topographic and hydrologically based models in two paired watersheds in Central Kansas. The effects of best management practices (BMPs) implementation on EG formation, and erosion rates within the watershed are discussed. The topographic index (TI) models used include: slope area model (SA), compound topographic index model (CTI), wetness topographic index model (WTI), slope area power (SA2), kinematic wave model (nLS), and modified kinematic wave model (nLSCSS). EGs predicted by each model threshold were compared with observed EGs obtained through digitization and field reconnaissance. The agreement of thresholds obtained from location and length approaches were compared by means of drainage density concept. Statistical analysis was performed by error matrix for EG location analysis, and root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE) for EG length analysis. A TIN-based real-time integrated basin simulator (tRIBS) model, a physically-based, distributed hydrological model was coupled with an EG erosion component (Foster and Lane model) to estimate the erosion rates, and effect of installation of BMPs on reduction of EG erosion rates from agricultural fields. The results indicated that TI models could predict EG location with a maximum total accuracy of 70%. The effectiveness of TI models at prediction of EGs is affected by watershed features such as installed structural best management practices, roads, and culverts. The CTI model outperformed all the TI models at prediction of EGs with maximum Kappa and NSE values of 0.32 and 0.55 respectively, and a minimum RMSE value of 0.087 m. Structural BMPs are effective at controlling erosion from croplands, however, the effectiveness of structural BMPs at reduction of sediment loadings from EGs vary depending on surface cover, and BMP geometry.

Page generated in 0.1221 seconds