• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 37
  • 11
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 291
  • 291
  • 173
  • 173
  • 91
  • 84
  • 83
  • 72
  • 61
  • 54
  • 50
  • 45
  • 45
  • 35
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Avaliação de diferentes pré-tratamentos e deslignificação alcalina na sacarificação da celulose de palha de cana / Evaluation of different pretreatments and alkaline delignification to saccharification of cellulose from sugarcane straw

Fernando Moreira Vasconcelos de Oliveira 16 November 2010 (has links)
No Brasil o etanol é considerado a melhor escolha para reduzir as dependências dos combustíveis fósseis. Para atender as metas de produção desse combustível renovável, fontes de materiais lignocelulósicos podem ser utilizadas com o intuito de se aproveitar a fração celulósica para obtenção de açúcar fermentável. Contudo, é preciso desenvolver métodos de pré-tratamento eficientes e economicamente viáveis custo para reduzir a recalcitrância da biomassa vegetal in natura, aumentando dessa forma a eficiência da etapa de hidrólise enzimática. Este trabalho teve como objetivo avaliar o efeito do pré-tratamento por explosão a vapor e do pré-tratamento com ácido diluído, seguidos ou não de uma etapa de deslignificação alcalina, na hidrólise enzimática da palha de cana-de-açúcar. O pré-tratamento por explosão a vapor foi realizado em reator de 2,5 m3 sob temperaturas de 180 °C, 190 °C e 200 °C, por 15 min. O pré-tratamento com ácido diluído (1% m:m) foi feito em reator rotatório de 20 L a 180 °C, 185 °C, 190 °C e 195 °C, por 10 min. A etapa de deslignificação com NaOH (1% m:v) foi feita a 100 °C, por 1 h, em reator de 350 L para a palha pré-tratada por explosão a vapor e em ampolas de 500 mL para a palha de cana pré-tratada com ácido diluído. Amostras de todos os tratamentos foram analisadas por FTIR e MEV. Foram feitos ensaios de hidrólise enzimática utilizando Celluclast 1.5L (15 FPU/g de amostra) e β-Glucosidase (10 UI/g de amostra). Os hidrolisados enzimáticos foram usados em testes de fermentabilidade conduzidos a 30 °C por 48 h utilizando S. cerevisiae UFPEDA 1238. Através de ambos pré-tratamentos foi possível remover mais de 90% de hemicelulose. O pré-tratamento com ácido diluído provocou uma maior degradação da celulose em relação ao pré-tratamento por explosão a vapor, bem como uma maior solubilização da lignina. A etapa de deslignificação alcalina somada ao pré-tratamento contribuiu para a remoção de até 80% da lignina. Análises de FTIR e MEV revelaram alterações das bandas de vibração dos grupamentos químicos e mudanças morfológicas das amostras tratadas em relação à palha in natura. O pré-tratamento por explosão a vapor a 200 °C promoveu a maior conversão enzimática (80%) e esse percentual foi aumentado para 85% pela aplicação da deslignificação alcalina. A fermentação dos hidrolisados enzimáticos se mostrou satisfatória, apresentando percentuais de eficiência acima de 70%. / In Brazil, ethanol is considered the best alternative to reduce dependence on fossil fuels. In order to enhance the production of this renewable fuel, lignocellulosic materials must be used with the goal of harnessing the cellulosic fraction to obtain fermentable sugar. However, an efficient pretreatment method to reduce recalcitrance of raw material is required for increasing the efficiency of enzymatic hydrolysis. This study aimed to evaluate the effect of two pretreatments, steam explosion and dilute acid, followed or not by an alkaline delignification, on enzymatic hydrolysis of sugarcane straw. Steam explosion was conducted in 2.5 m3 reactor at temperatures of 180 °C, 190 °C and 200 °C for 15 min. Dilute acid pretreatment was carried out in 20 L reactor at 180 °C, 185 °C, 190 °C and 195 °C for 10 min, using H2SO4 (1% w:w). Alkaline delignification was made with NaOH (1% w:v) at 100 °C for 1 h. Samples of all treatments were analyzed by FTIR and SEM. Enzymatic hydrolysis was performed with commercial cellulase Celluclast 1.5L (15 FPU/w of sample) and β-Glucosidase (10 IU/w of sample). Alcoholic fermentation by S. cerevisiae UFPEDA 1238 was conducted at 30 °C for 48 h. The pretreatments studied were able to remove over 90% of hemicellulose fraction. Higher degradation of cellulose and lignin fractions was observed during diluted acid pretreatment. Alkaline delignification contributed to the removal of more than 80% of lignin. FTIR and SEM analysis revealed changes in the vibration bands of chemical groups and morphological variation of the treated samples compared to raw material. Steam explosion at 200 °C promoted the higher enzymatic conversion (80%) and this percentage was increased to 85% by application of alkaline delignification. Fermentation tests efficiency was above than 70%.
62

Prospecção e caracterização da família gênica Expansina, envolvida na modificação estrutural da celulose cristalina em cana-de-açúcar / Prospecting and characterization of the Expansin gene family, involved in the structural modification of crystalline cellulose in sugar cane

Aline Larissa Gonçalves 27 January 2017 (has links)
Com o crescente aumento da demanda energética e a redução dos recursos fósseis, os biocombustíveis obtidos a partir de biomassa lignocelulósica emergem como uma importante fonte de energia alternativa e sustentável. A biomassa lignocelulósica é formada basicamente por celulose, hemicelulose e lignina, cujo agrupamento compõem a complexa matriz da parede vegetal. A celulose é o principal composto de interesse presente na biomassa, uma vez que pode ser quebrada em glicose e usada no metabolismo de microrganismos para a posterior produção de etanol combustível. No entanto, diversos fatores tornam a biomassa recalcitrante ao processo de conversão, o que eleva o custo de produção dos biocombustíveis. Nesse contexto, proteínas aditivas, como as Expansinas vegetais vêm ganhando grande destaque devido à sua capacidade de afrouxar a parede celular por meio do enfraquecimento da ligação entre os polissacarídeos de forma não covalente, o que diminuí o estresse da parede celular e facilita assim a quebra da celulose por enzimas específicas. Assim, o presente trabalho teve como objetivo identificar genes da superfamília das Expansinas em quatro espécies de gramíneas (Zea mays, Sorghum bicolor, Brachypodium distachyon e Saccharum spp.). As sequências nucleotídicas obtidas a partir de bancos transcriptômicos de cana-deaçúcar foram usados na construção de árvores filogenéticas, por meio das quais pode se inferir as relações de ortologia entre espécies e selecionar sequências com potencial aplicação biotecnológica na promoção da sacarificação enzimática, aumento de biomassa e resistência vegetal à estresse abiótico, sendo estes ShEXPA14, ShEXPA24, ShEXPB22, ShEXPL3, ShEXPA1- zm, ShEXPA33, ShEXPB28, ShEXPB3, ShEXPB21, ShEXPB25 e ShEXPB4. Adicionalmente, os genes de sorgo e cana-de-açúcar foram caracterizados quanto aos domínios e motivos conservados das Expansinas de plantas, identificando as diferenças estre as subfamílias que podem contribuir para a maior especificidade das ?-expansinas em parede celular de gramíneas. / With increasing energy demand and the reduction of fossil resources, biofuels obtained from lignocellulosic biomass emerge as an important source of alternative and sustainable energy. The lignocellulosic biomass is basically formed by cellulose, hemicellulose and lignin, whose grouping makes up the complex matrix of the vegetal cell wall. Cellulose is the main compound of interest present in biomass since it can be broken down into glucose and used in the metabolism of microorganisms for the subsequent production of fuel ethanol. However, several factors make the biomass recalcitrant to the conversion process, which raises the biofuel production cost. In this context, additive proteins, such as vegetable Expansins have been gaining prominence due to their ability to loosen the cell wall by weakening the bond between the polysaccharides in a non-covalent way, which decreases the stress of the cell wall and thus facilitates the break of cellulose by specific enzymes. Thus, the present work aimed to identify nucleotide sequences of the Expansinas superfamily in four species of grasses (Zea mays, Sorghum bicolor, Brachypodium distachyon and Saccharum spp.). Sugarcane transcripts were used in the construction of phylogenetic trees, through which one can infer the relations of orthology between species and obtain sequences with potential biotechnological application in the promotion of enzymatic saccharification, biomass increase and plant resistance to abiotic stress, these being ShEXPA14, ShEXPA24, ShEXPB22, ShEXPL3, ShEXPA1-zm, ShEXPA33, ShEXPB28, ShEXPB3, ShEXPB21, ShEXPB25 and ShEXPB4. In addition, sorghum and sugarcane genes were characterized by the conserved domains and motifs of plant Expansins, identifying the differences between the subfamilies that may contribute to the greater specificity of the EXPB in the cell wall of grasses.
63

Pré-tratamento do bagaço de cana utilizando o processo de oxidação avançada por feixe de elétrons para hidrólise enzimática da celulose / Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose

Márcia Almeida Ribeiro 20 February 2013 (has links)
O bagaço de cana de açúcar é uma fonte de energia renovável e matéria prima promissora na produção de biocombustível, pois representa cerca de 30% de glicose contida na planta com potencial de ser hidrolisado e convertido em etanol. Os principais constituintes do bagaço de cana são a celulose, formada por cadeia linear de glicose, a hemicelulose, um polímero amorfo constituído de xilose, arabinose, galactose e manose e a lignina, um polímero complexo formado por unidades de fenilpropanos que atuam como revestimento impermeabilizante nas fibras, difícil de ser removido por sua característica recalcitrante. O objetivo do presente trabalho foi avaliar a eficiência da irradiação com feixe de elétrons como pré-tratamento do bagaço de cana para hidrólise enzimática da celulose. O pré-tratamento do bagaço de cana é uma das etapas mais importante para torná-lo economicamente viável e competitivo na produção de energia. Como pré-tratamento o processamento por feixe de elétrons pode fragilizar a estrutura da hemicelulose e lignina, pela ação de radicais altamente reativos que quebram as ligações químicas, reduzindo o grau de polimerização das fibras. Foram avaliados os efeitos da radiação na estrutura e composição do bagaço, assim como a combinação do processamento por feixe de elétrons com o pré-tratamento de esplosão à vapor. Para hidrólise enzimática utilizou-se enzimas comerciais fornecidas pela Novozymes. O processamento por feixe de elétrons levou a alterações na estrutura e composição do bagaço de cana aumentando a solubilidade pela degradação de celulose alfa e hemicelulose e aumentando também o rendimento da hidrólise enzimática. No caso do bagaço explodido, não houve alteração no rendimento da hidrólise enzimática, mas o processamento por feixe de elétrons promoveu uma redução de 67% no furfural, que é formado no processo de explosão a vapor. / The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropans units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most importante steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process.
64

Izučavanje funkcionalnih svojstava enzimski modifikovanih biljnih globulina / Investigation of the functional properties of enzymatic modified plant globulins

Popović Ljiljana 19 April 2012 (has links)
<p>Predmet doktorske disertacije je izučavanje različitih bioprocesa za modifikovanje biljnih globulina radi unapređenja njihovih funkcionalnih karakteristika. Istraživanja su zasnovana na karakterizaciji i enzimskoj modifikaciji glavnog rezervnog proteina (12S), kukurbitina, iz semena uljane tikve (<em>Cucurbita pepo</em>). Osnova istraživanja je enzimska konverzija globulina i dobijanje proteinskih modifikata delovanjem hidrolaza i transferaza. U okviru istraživanja, enzimski procesi modifikacije globulina izučavani su sa dva aspekta: enzimska hidroliza i enzimsko umrežavanje (cross-linking), primenom komercijalnih enzimskih preparata. Takođe istraživanja obuhvataju i razvoj i kontrolu samih bioprocesa definisanjem i optimizacijom procesnih parametara (temperature, pH, koncentracije enzima i supstrata, vreme reakcije). Ovako definisani procesi eksploatisani su u cilju kreiranja željenih funkcionalnih karakteristika proteina spram njihove potencijalne primene u formulacijama hrane. Odabir i optimizacija procesnih parametara i modelovanje bioprocesa izvedeno je implementiranjem nove kompjuterske i analitičke metodologije</p> / <p>The PhD thesis research is aimed at development of different bioprocesses for modification of plant globulins in order to improve their functional properties. Studies are based on characterization and enzymatic modification of major storage protein (12S), cucurbitin derived from pumpkin oil seed (<em>Cucurbita pepo</em>). The base of research is enzymatic conversion of cucurbitin by hydrolase and transferase. Two different enzymatic processes are used for protein modification: (i) enzymatic hydrolysis and (ii) enzymatic cross-linking. To monitor, control the bioprocesses, and definition of process parameters, such as temperature, pH, enzyme-substrate ratio, reaction time, Response Surface Methodology (RSM) was used. In addition, RSM was employed for production of protein modification with desired functional properties.</p>
65

Composição e disgestibilidade enzimática do bagaço de cana-de-açúcar pré-tratado com ácido sulfúrico diluído em reator estático / Composition and enzymatic digestibility of sugarcane bagasse pretreated with dilute sulfuric acid in static reactor

Santos, Victor Tabosa de Oliveira 26 November 2010 (has links)
O presente trabalho teve como principal objetivo correlacionar a composição química do bagaço de cana-de-açúcar pré-tratado com H2SO4 diluído com a eficiência da sacarificação enzimática da celulose presente no material. Primeiramente, o bagaço in natura foi extraído com água, etanol ou água seguida de etanol, e as composições químicas determinadas. Posteriormente, o bagaço in natura foi pré-tratado com H2SO4 diluído em êmbolos de 200 mL, utilizando 15% de teor de sólidos (m/v). A temperatura (112,5-157,5 °C), o tempo de residência (5-35 min) e a concentração ácida (0-3,0% m/v) variaram de acordo com um planejamento fatorial 23 completo. Após o pré-tratamento, as amostras foram caracterizadas quimicamente. Em seguida, dois extratos enzimáticos comerciais foram caracterizados quanto às atividades de enzimas hidrolíticas e fenoloxidases, e aos teores de proteínas. As condições adequadas de sacarificação enzimática da celulose para a amostra de bagaço pré-tratada com H2SO4 diluído (15% sólidos, 2% ácido, a 150ºC por 30 min) foram determinadas através de planejamentos fatoriais 23 completos, variando teor de sólidos (1,19-4,81% m/v), carga enzimática (1,91-38,09 FPU/g de bagaço) e carga de surfactante (0-0,1 g/g de bagaço), para os dois extratos enzimáticos. As amostras de bagaço pré-tratadas sob diferentes condições de temperatura, tempo de residência e concentração de H2SO4 (primeiro planejamento fatorial) foram submetidas à sacarificação enzimática com um dos extratos. Por fim, amostras selecionadas foram caracterizadas quanto às alterações morfológicas provocadas pelo pré-tratamento e pela hidrólise enzimática, por microscopia eletrônica de varredura. Os resultados mostraram que água seguida de etanol extraiu maior quantidade de extrativos do bagaço. Os extrativos apresentaram absorção de luz apenas na região do ultravioleta. A porcentagem de lignina nos bagaços extraídos com água, etanol e água seguida de etanol foi menor que aquela encontrada no bagaço in natura. De acordo com a condição de pré-tratamento, os teores de celulose, hemicelulose e lignina nos bagaços pré-tratados diferiram substancialmente. A maior variação foi observada para hemicelulose (3,67-27,27%). Os três fatores avaliados no pré-tratamento influenciaram na composição química do bagaço pré-tratado. Por sua vez, os dois extratos enzimáticos apresentaram um complexo celulolítico completo e considerável atividade de xilanases, porém não foi observada atividade de fenoloxidases. O extrato II apresentou maior quantidade de proteínas (152,45±10,0 mg/mL), comparado ao extrato I (105,2±6,6 mg/mL). Para 24 horas de hidrólise enzimática com o extrato I, as três variáveis independentes influenciaram na digestão do bagaço pré-tratado. Somente os efeitos das cargas de enzima e surfactante foram significantes, utilizando o extrato II. Posteriormente, foi possível aumentar o teor inicial de sólidos sem comprometer o rendimento de sacarificação com o extrato II. Não foi possível correlacionar a conversão de celulose com o fator de severidade do pré-tratamento. Por outro lado, foi observada correlação negativa entre o conteúdo de hemicelulose e a conversão enzimática de celulose, enfatizando a influência da composição química do bagaço de cana na hidrólise enzimática da celulose. Observaram-se diferenças morfológicas entre o bagaço in natura e amostras pré-tratadas sob condições branda e severa, bem como após suas respectivas hidrólises enzimáticas. / This study aimed to correlate the chemical composition of a sugarcane bagasse pretreated with dilute H2SO4 with the efficiency of cellulose enzymatic saccharification of this material. First, the sugarcane bagasse was extracted with water, ethanol or water followed by ethanol, and its chemical composition was determined. Subsequently, the sugarcane bagasse was pretreated with dilute H2SO4 in 200 mL stainless steel containers, using 15% of solids loading (w/v). The temperature (112.5-157.5°C), time of residence (5-35 min) and acid concentration (0-3.0% w/v) varied according to a 23 full factorial design. After the pretreatments, the chemical compositions of the pretreated bagasses were determined. Then, two commercial enzymatic extracts were characterized regarding the activities of hydrolytic enzymes and phenoloxidases, and protein contents. The enzymatic saccharification conditions for the bagasse sample pretreated with dilute H2SO4 (15% solids, 2% acid, 150°C for 30 min) were determined through 23 full factorial designs, varying the solids loading (1,19-4.81% w/v), enzyme loading (1.91-38.09 FPU/g of bagasse) and surfactant loading (0-0.1 g/g of bagasse) for the two enzymatic extracts. The bagasse samples pretreated under the different conditions of temperature, time of residence and H2SO4 concentration (first factorial design) were subjected to enzymatic saccharification using one of the extracts. Finally, selected samples were analyzed for morphological changes caused by pretreatment and enzymatic hydrolysis, by scanning electron microscopy. The results showed that water followed by ethanol extracted the highest amount of extractives. The extractives showed light absorption only in the ultraviolet region. The percentage of lignin in the bagasse samples extracted with water, ethanol and water followed by ethanol was lower than that found in the raw material. According to the pretreatment conditions, the amount of cellulose, hemicellulose and lignin in the pretreated bagasse differed substantially. The greatest variation was observed for the hemicellulose content (3.67-27.27%). All the three factors evaluated in the pretreatment affected the chemical composition of the pretreated bagasse. In turn, the two enzymatic extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. The extract II showed higher protein content (152.45±10.0 mg/mL) when compared with the extract I (105.2±6.6 mg/mL). For 24 hours of enzymatic hydrolysis using the extract I, all the three independent variables influenced the saccharification of pretreated bagasse. Only the enzyme and surfactant loadings were significant, when using the extract II. Later, it was possible to increase the initial solids content without hindering the saccharification yield, using the extract II. It was not possible to correlate the cellulose conversion with the pretreatment severity. On other hand, it was possible to observe a negative correlation between the hemicellulose content and the efficiency of enzymatic conversion, emphasizing the influence of the sugarcane bagasse chemical composition in the enzymatic hydrolysis of cellulose. Morphological differences were observed between the raw material and sugarcane bagasse samples pretreated under high or low severity, as well as after their corresponding enzymatic hydrolysis.
66

Aplicação de uma mistura de enzimas para hidrolisar bagaço de cana-de-açúcar pré-tratado com sulfito / Application of enzyme mixture to hydrolyze sugarcane bagasse pretreated with alkali sulfite

Reinoso, Felipe Andres Montoya 26 August 2013 (has links)
O cultivo da cana-de-açúcar é uma das atividades agrícolas mais importantes no Brasil, produzindo após a moagem o caldo, utilizado para a produção de açúcar e etanol, e o bagaço, resíduo lignocelulósico. O bagaço é recalcitrante à hidrólise enzimática, em parte pela baixa porosidade, resultante do recobrimento das fibrilas de celulose com lignina e hemicelulose. Neste estudo, o bagaço foi pré-tratado com sulfito alcalino nas concentrações de 2,5% de NaOH e 5% de Na2SO3 versus 5% de NaOH e 10% de Na2SO3 para produzir substratos para hidrólise enzimática. Ambos pré-tratamentos produziram substratos com teor de hemicelulose, grupos ácidos, grau de retenção de água e área superficial semelhantes. O conteúdo de lignina foi bem diferente nos bagaços pré-tratados com 5% de sulfito (21% de lignina) e 10% de sulfito (13% de lignina). A hidrólise da celulose e hemicelulose do bagaço com alto teor de lignina, utilizando a carga enzimática de 40 FPU/g e 80 U/g de ?-glicosidase foram próximas a 50% em 48 horas e, mesmo no bagaço com pouca lignina a conversão dos polissacarídeos não foi completa (90%). Considerando a importância do tipo de enzimas para a conversão dos polissacarídeos dos bagaços pré-tratados, realizou-se um planejamento experimental 24 com 6 pontos centrais ampliado em estrela, para avaliar uma mistura de enzimas partindo de 5 FPU/g do extrato comercial de Trichoderma reesei (celluclast) combinado com enzimas purificadas comerciais: xilanase de Neocallimastix patriciarum (família 10), xilanase de Thermotoga maritima (família 11), ?-xilosidase de Selelomonas ruminantium e ?-glicosidase de Aspergillus niger. A aplicação da mistura de enzimas otimizada no bagaço pré-tratado com alta carga de sulfito aumentou a conversão de celulose e hemicelulose em 6,6% e 15% respectivamente, comparado com a mistura de referência (5FPU de celluclast e 10UI de Novozyme 188 por grama de bagaço). A suplementação da celluclast com ?-xilosidase e ?- glicosidase foi estatisticamente significativa em 24 horas de hidrólise a um nível de 95% de confiança e a interação da xilanase 10 e 11 foi significativa com um nível de confiança de 90%. Quando foram realizados os mesmos ensaios do planejamento com o substrato com alto teor de lignina, as hidrólises da celulose e hemicelulose com a mistura de enzimas foram inferiores à obtida com a referência. A suplementação com xilanases e ?-xilosidase aumentou a conversão enzimática da hemicelulose apenas do substrato com pouca lignina, entretanto nos hidrolisados de ambos os substratos foi detectada a presença de xilooligossacarídeos, indicando a necessidade de adição de mais ?-xilosidase à mistura enzimática. As velocidades iniciais de hidrólise da celulose e hemicelulose foram pouco alteradas quando a lignina do bagaço reduziu de 21% para 13%, porém a conversão em 48 h de reação foi o dobro. Este estudo mostrou que o acesso das enzimas à hemicelulose foi limitado pelo alto teor de lignina do substrato, e que o benefício do uso de xilanases para a conversão de celulose foi obtido no substrato pré-tratado com alta carga de sulfito. / The cultivation of sugarcane is one of the most important agricultural activities in Brazil. The juice obtained from the crushed stalks of sugarcane is used to produce sugar and ethanol and the dry, fibrous residue remaining is the bagasse. Bagasse is recalcitrant to enzymatic hydrolysis, in part by low porosity due to the partial filling of space between the cellulose microfibrils by lignin and hemicelluloses. In this study, bagasses were pretreated with alkaline sulfite at concentrations of 2.5% NaOH and 5% Na2SO3 NaOH versus 5% and 10% Na2SO3 to produce substrates for enzymatic hydrolysis. Both substrates presented similar hemicellulose content, acid groups, water retention and specific surface area. Lignin content differed between pretreated bagasse with 5% sulfite (21%) and 10% sulfite (13%). The hydrolysis of cellulose and hemicellulose of bagasse with high lignin content, using 40 FPU/g and 80 U/g of ?-glucosidase was aproximately 50% in 48 hours and even on bagasse with low lignin content, the polysaccharides conversion was not complete (90%). Considering the importance of the type of enzymes for the conversion of polysaccharides of pretreated bagasses, a 24 full factorial experimental design with six central points was performed to evaluate a mixture of enzymes. A load of 5 FPU/g of Trichoderma reesei extract (celluclast) was combined with purified commercial enzymes: Neocallimastix patriciarum xylanase (family 10), Thermotoga maritima xylanase (family 11), Selelomonas ruminantium ?-xylosidase and ?-glucosidase from Aspergillus niger. The optimized mixture improved the conversion of cellulose and hemicellulose of the substrate with low lignin content in 6.6% and 15% respectively, when compared to the reference mixture (5FPU of celluclast and 10 IU of novozyme 188 per gram of bagasse). Supplementation with ?-xylosidase and ?-glucosidase was statistically significant at 24 hours of reaction and also the interaction of xylanases 10 and 11. When the same assays were performed with the substrate with low lignin, hydrolysis of the cellulose and hemicellulose with a mixture of purified enzymes was inferior to that obtained by the reference. Supplementation with xylanase and ?-xylosidase improved the enzymatic conversion only for substrate with low lignin content, however in supernatants of both substrates was detected the presence of xylo-oligosaccharides, suggesting the need for further addition of ?-xylosidase to the enzyme mixture. Initial rate of cellulose and hemicellulose hydrolysis changed very little when the lignin in the bagasse was reduced from 21% to 13%, but the conversion at 48 h conversion time was twice higher. This study showed that access of enzymes to the hemicellulose was limited by the high lignin content of the substrate, and that the benefit of using xylanases for the conversion of cellulose was obtained on the substrate pretreated with high sulfite load.
67

Distribuição do tamanho de poros e sacarificação enzimática de amostras de bagaço de cana-de-açúcar submetidas à deslignificação e secagem / Pore size distribution and enzymatic hydrolysis of sugarcane bagasse samples submitted to delignification and drying

Santi Junior, Celso 16 January 2012 (has links)
Os materiais lignocelulósicos possuem características que limitam a sacarificação enzimática da celulose. Entre essas características pode-se classificar a porosidade como uma das mais importantes, sendo usualmente mensurada pela técnica de exclusão de solutos. A secagem do material também pode aumentar sua recalcitrância por meio do fenômeno de hornificação. Neste contexto, o presente trabalho teve como objetivo avaliar a influência do teor de lignina e da secagem na porosidade e na sacarificação enzimática do bagaço de cana-de-açúcar. A partir de uma amostra in natura quatro amostras com teores de lignina decrescentes foram geradas, utilizando o método de deslignificação por clorito-ácido. Uma fração destas amostras foi seca ao ar em temperatura ambiente e o restante teve seu teor de umidade mantido. A análise das modificações estruturais promovidas pelo tratamento citado foi feita utilizando microscopia eletrônica de varredura (MEV). A porometria das amostras, determinada via técnica de exclusão de solutos, foi realizada utilizando 1 g de massa seca de amostra e 20 g de soluções de sondas moleculares com concentração de 1,5% (m/m); após 24 h sob agitação manual ocasional a 25 °C a determinação da distribuição do volume e área superficial de poros foi realizada com base na redução da concentração inicial da solução. O valor de retenção de água das amostras foi calculado via centrifugação. As amostras foram submetidas à sacarificação com cargas enzimática e de surfactante de 10 FPU e 0,025 g de Tween 20 por grama de bagaço, respectivamente. A reação ocorreu a 45 °C sob agitação de 150 rpm e a conversão de celulose foi medida após 2, 8, 24 e 72 h. As amostras deslignificadas por 1, 2, 3 e 4 horas apresentaram 14,2; 9,2; 8,0 e 5,9% de lignina, respectivamente, enquanto que a amostra in natura foi composta por 20,7%. Por meio das análises feitas por MEV, pôde-se observar que a remoção de lignina acarretou em uma descompactação estrutural dos feixes vasculares. As amostras com maiores teores de lignina apresentaram menores volumes e áreas superficiais de poros e piores conversões enzimáticas de celulose. Para a amostra in natura o volume total de poros foi de 0,89 mL/g de bagaço enquanto que para as amostras deslignificadas por 1, 2, 3 e 4 horas este volume foi de 1,19, 1,77, 1,92 e 2,21 mL/g de bagaço, respectivamente. A secagem reduziu o volume total de poros das amostras deslignificadas por 2, 3 e 4 horas para 1,47, 1,55 e 1,98 mL/g de bagaço respectivamente. Os valores de retenção de água foram similares aos valores de volume total de poros obtidos via técnica de exclusão de solutos. Enquanto cerca de apenas 20% da celulose da amostra in natura foi convertida após 72 h de sacarificação, a amostra com o menor teor de lignina apresentou conversão próxima a 100%. A secagem das amostras deslignificadas não alterou as taxas nem os rendimentos de sacarificação. Pode-se concluir então que o teor de lignina desempenha um papel importante na limitação da sacarificação enzimática da celulose, e que sua remoção implica num aumento do volume de poros do material. / Lignocellulosic materials present characteristics that limit the enzymatic saccharification of cellulose. Among these features, the porosity, usually measured by the solute exclusion technique, can be classified as one of the most important. Drying of the material can also increase its recalcitrance by the hornification phenomenon. In this context, this study aimed to evaluate the influences of lignin content and drying in the porosity and enzymatic saccharification of the sugar cane bagasse. From an in natura sample, other four samples with decreasing lignin contents were generated using the method of delignification by acid chlorite. A fraction of these samples was air dried at room temperature and the remainder one was kept wet. The analysis of the structural changes promoted by the aforementioned treatment was performed using scanning electron microscopy (SEM). The samples porometry, carried out using the solute exclusion technique, was performed using 1 g of sample (dry weight) and 20 g of solutions of molecular probes with concentration of 1.5% (w/w); after 24 h under occasional manual agitation at 25 °C, determination of the volume and surface area distribution of pores was carried out based on the reduction of the initial concentration of the solution. The water retention value of the samples was calculated by centrifugation. The samples were subjected to enzymatic saccharification with enzyme and surfactant loads of 10 FPU and 0.025 g of Tween 20 per gram of bagasse, respectively. The reaction was carried at 45 °C under agitation of 150 rpm and the cellulose conversion was measured after 2, 8, 24 and 72 h. Sample delignified by 1, 2, 3 and 4 hours showed 14.2, 9.2, 8.0 and 5.9% of lignin content, respectively, while the in natura sample was composed of 20.7%. Through SEM analysis, it was observed that the lignin removal resulted in a material with the vascular bundles structurally less compact and ordered. The samples with higher contents of lignin had lower volumes and surface areas of pores and worse enzymatic cellulose conversions. For the in natura sample the total pore volume was 0.89 mL/g of bagasse while for the samples delignified by 1, 2, 3 and 4 hours this volume was 1.19, 1.77, 1.92 and 2.21 mL/g of bagasse, respectively. Drying reduced the total pore volume of samples delignified by 2, 3 and 4 hours to 1.47, 1.55 and 1.98 mL/g of bagasse, respectively. The water retention values were similar to the total pore volume obtained by the solute exclusion technique. While only about 20% of the cellulose in the in natura sample was converted after 72 h of saccharification, the sample with the lowest lignin content showed a conversion close to 100%. Drying of the delignified samples did not change rates and yields of saccharification. It can be concluded then that the lignin content plays an important role on limiting the enzymatic saccharification of cellulose, and that its removal implies in increase in the pore volume of the material.
68

Otimização de estratégias de pré-tratamento de bagaço de cana-de-açúcar para produção de etanol de segunda geração via hidrólise enzimática / Sugarcane bagasse pretreatment optimization strategies for the production of second generation ethanol via enzymatic hydrolysis

Espirito Santo, Melissa Cristina do 19 February 2015 (has links)
Atualmente, o aumento da preocupação com a sustentabilidade ambiental, alinhado às perspectivas de esgotamento das reservas de petróleo, tem direcionado às buscas por fontes renováveis de energia. O emprego de resíduos agroindustriais, principalmente de usinas sucroalcooleiras destaca-se como sendo uma alternativa para a produção de etanol de segunda geração. Dentre as metodologias aplicadas para disponibilização dos açúcares fermentescíveis está a hidrólise enzimática. Ainda, para facilitar esta etapa e torná-la mais acessível, submete-se, previamente, o material lignocelulósico a um pré-tratamento, com o objetivo de contribuir com a susceptibilidade da celulose a ataques enzimáticos. No entanto, devido à complexidade das estruturas lignocelulósicas, os processos de hidrólise e pré-tratamento precisam se tornar mais eficientes e economicamente viáveis. Desta forma, o objetivo desse trabalho foi avaliar e caracterizar os pré-tratamentos hidrotérmico e organossolve (etanol 50%), isoladamente, e estes combinados em diferentes condições, assim como a influência destes procedimentos na estrutura e composição da biomassa, bem como na hidrólise enzimática. Os resultados demonstraram que os pré-tratamentos hidrotérmicos a 160 ºC nas condições analisadas foram pouco efetivos na melhora do acesso enzimático durante a etapa de hidrólise, pois atuaram de maneira branda na parede celular, pouco solubilizando a hemicelulose e lignina, conforme as análises físicas comprovaram. Os tratamentos combinados hidrotérmico 30 min e 60 min a 160 ºC seguidos pelo organossolve por 150 min apresentaram semelhança morfológica e alta solublização da lignina e hemicelulose, justificando os valores de hidrólise. Nossos resultados abrem perspectivas de novos estudos que visam a otimização dos pré-tratamentos hidrotérmicos e organossolve, além da compreensão das alterações composicionais e morfológicas que levam à melhoria da hidrólise enzimática na biomassa lignocelulósica. / The concerns with environmental sustainability and perspectives of petroleum reserves depletion motivated exploration of new and sustainable energy sources. In this context, renewable energies start to receive significant attention in the world´s energy matrix, with biofuels playing a special role. The use of agro-industrial residues, mainly from the sugarcane industry, stands out as a viable alternative for the production of second-generation ethanol. The enzymatic hydrolysis of the biomass has a number of advantages for polysaccharides depolimerization, such as high substrate specificity, low environmental impact and lack of corrosion issues. To further facilitate this procedure and to make biomass more accessible, the lignocellulosic material has to be previously submitted to a pretreatment in order to increase the cellulose accessibility and susceptibility to the enzymatic action. This process aims at the disorganization of the chemical structure of the lignocellulosic matter, facilitating the further steps of hydrolysis and fermentation. Due to the complexity of the lignocelluloses structures, their pretreatment and hydrolysis processes have to become more efficient and economically viable to be efficiently applied at an industrial scale. Therefore, the objective of this work is to evaluate the hydrothermal and organosolv (50% ethanol) pretreatments, separately and combined in different conditions, and the influence of these procedures on the structure and composition of the biomass and on the efficiency of enzymatic hydrolyses. Our results demonstrated that the hydrothermal pretreatments at 160ºC within the analyzed reaction conditions had minor effects on improving the enzymatic efficiency, being not harsh enough to introduce significant modifications of the cell wall composition and structure, as demonstrated by our physical and chemical analyses. The combined hydrothermal treatments lasting 30 min and 60 min at 160ºC followed by the organosolv step for 150 min resulted in significant morphological changes and high lignin and hemicelluloses solubilization, resulting in an efficient enzymatic hydrolysis. Our results open perspectives of further studies aimed at optimization of hydrothermal and organosolv pretreatments and comprehension of compositional and morphological changes which lead to improved enzymatic hydrolysis of the lignocelulosic biomass.
69

Etude de la déconstruction de résidus agricoles lignocellulosiques par extrusion biocatalytique / Study of the deconstruction of agricultural lignocellulosic lant residues by biocatalytic extrusion

Gatt, Etienne 24 January 2019 (has links)
L’extrusion biocatalytique, ou bioextrusion, est une technique d’extrusion réactive utilisant des enzymes comme catalyseurs. Cette technique est considérée en temps qu’étape intermédiaire, subséquente au prétraitement physico-chimique et précédente à l’hydrolyse enzymatique enréacteur fermé. L’utilisation de l’extrusion permet un procédé continu, facilement modulable et adaptable à des conditions de hautes consistances, de nombreuses biomasses et facilement transférable à l’échelle industrielle. Néanmoins, les données bibliographiques font ressortir la complexité des entrants et leurs interactions lors de la bioextrusion de biomasses lignocellulosiques. Les conclusions des bioextrusions de biomasses amidonnées soulignent l’importance de l’étude de l’influence de la concentration en substrat et en enzymes. Les résultats obtenus à partir de la bioextrusion des biomasses lignocellulosiques valident l’existence d’une activité enzymatique en extrudeuse malgré la contrainte thermomécanique et le temps de séjour limité. Lors de cette étape, l’hydrolyse de la fraction cellulosique est favorisée pour des milieux concentrés en substrat et en enzymes. Des modifications significatives des fractions cellulosiques cristallines et amorphes en surface, des réductions des tailles de particules, une dégradation visuelle des structures de la biomasse et l’augmentation de la sensibilité à la décomposition thermique, sont aussi observées sur la fraction solide. L’hydrolyse enzymatique des bioextrudats est prolongée en réacteur fermé. La bioextrusion permet des améliorations significatives des taux et vitesses de conversion des sucres sur le long terme, jusqu’à 48 h. Les gains observés sont relativement constants pour la paille de blé et augmentent avec le temps pour les écorces de bouleau et les résidus de maïs. Post-extrusion, la concentration en substrat influence négativement la conversion des sucres. Cependant, les plus-values de conversion du glucose lié à la bioextrusion de paille de blé sont principalement observables pour des concentrations en substrat et en enzymes élevées. À partir de 4 h, des baisses significatives de la conversion du xylose sont observées après bioextrusion. Les déstructurations de la fraction solide, déjà observées au cours la bioextrusion, se poursuivent en réacteur fermé. Les meilleurs résultats hydrolytiques aux niveaux des hautes charges en enzymes et en substrat sont associables aux bonnes conditions de mélanges caractéristiques des éléments bilobes. L’ensemble enzymatique est probablement réparti de façon plus homogène (mélange distributif) pour cibler plus de sites disponibles. De plus, le mélangé dispersif limite la proximité entre enzymes de même type et les gênes associées. Le procédé d’extrusion permet une agitation efficace, un bon transfert de masse et probablement un meilleur contact entre enzymes et substrat. Les moins bons résultats de conversion du xylose sont probablement à relier à des phénomènes d’adsorption non-spécifique, ou encore de désactivation des hémicellulases, provoqués par l’intensité des contraintes thermomécaniques et les résidus ligneux. Les bons résultats de déstructuration après bioextrusionsont associables à une action synergétique des contraintes mécanique et biochimique. Les analyses d’autofluorescence montrent l’évolution de la fraction ligneuse dans le processus de déconstruction de la fraction solide. Une production progressive de particules très fines,visiblement associée à la fraction ligneuse, est observée. Des complexes lignine-carbohydratessont aussi détectés dans la fraction liquide. Etant peu, voire pas hydrolysable par voie enzymatique, ces fractions hétéropolymériques sont un frein à la déconstruction. Si la déstructuration des lignines est probablement majoritairement liée au prétraitement alcalin, le procédé de bioextrusion provoque une diminution de la teneur en hétéropolymères de plus hautes masses moléculaires. / Biocatalytic extrusion, also named bioextrusion, is a reactive extrusion technique using enzymes as catalysts. Bioextrusion is considered as a link between the previous physico-chemical pretreatment (like alkaline extrusion) and the subsequent enzymatic hydrolysis in batch conditions. The extrusion allows a continuous, flexible and versatile process for high consistency media, easily transferable to the industrial level. However, complexity of both lignocellulosic biomass and lignocellulolytic enzymes and their interactions during the extrusion process are underlined by the literature. Numerous response surface methodology experiments with starchy biomass indicate that bioextrusion efficiency is mainly influenced by substrate and enzymes loading. Enzymatic activity during the bioextrusion process of lignocellulosic biomass is confirmed by the experiments despite the mechanical constraints and the limited residence time. During bioextrusion, best holocellulosic fraction hydrolysis results were obtained with high substrate and enzymes loadings. Significant modifications of the solid fraction like particule size reduction, visual deconstruction of the biomass structure, increased sensibility to thermal decomposition and the evolution of the surface exposure of crystalline and amorphous cellulose were observed. Enzymatic hydrolysis of the bioextrdates is prolonged in batch conditions. Clear improvements of speeds and rates of sugars conversion up to 48 h indicate a long term influence of the bioextrusion. Gain observed are steady for the pretreated wheat straw whereas it increases with time for corn residues and birch barks. Post-extrusion, a negative influence of the substrate loading is measured. However, best enhancements for the glucose conversion of pretreated wheat straw are detected for high substrate and enzymes loadings. From 4 to 48 h, significant losses in xylose conversion are measured with previous bioextrusion. Indicators of the solid fraction deconstruction, observed during the bioextrusion step, indicate a stronger biomass degradation after 48 h. Improvements of glucose conversion rates can be associated with good mixing conditions of the extruder, especially due to the use of kneading elements. Enzymes are probably more homogeneously distributed (distributive mixing) and can access more catalytic sites available. Moreover, dispersive mixing limits the enzyme jamming due to the biocatalysts concentration. Extrusion process permits an better agitation efficiency, good mass transfer conditions and probably a higher contact between substrate and enzymes. Lower xylose conversion results may be attributed to non-specific adsorptions or inactivation phenomena due to mechanical constraints and lignin residues. Good deconstruction results on the solid fraction may be associable with a synergetic action between mechanical and biochemical constraints. Autofluorescent signal analysis of the lignin fraction show its evolution during the deconstruction of the solid residue. During the hydrolysis, a progressive production of very small particles, appearing to be associated with the lignin fraction is observed. Lignin-carbohydrate complexes are also detected in the liquid fraction. These heteropolymeric complexes, difficult or even impossible for the enzymes to hydrolyze, are an obstacle to the biomass valorization. If lignin deconstruction is mainly due to the alkaline pretreatment, bioextrusion process seems to reduce the proportion of these heteropylymers with high molecular weights.
70

Encapsulation of flaxseed oil within modified lentil protein isolate matrices

2013 March 1900 (has links)
The overarching goal of this research was to formulate an encapsulated powder using a modified lentil protein isolate-maltodextrin mixture to encapsulate flaxseed oil by freeze drying. The primary objectives were: a) to examine the physicochemical and emulsifying properties of lentil protein isolates with different degrees of hydrolysis; b) to design and test the physicochemical properties of encapsulated flaxseed oil using a wall material with native, heat treated and partially hydrolyzed lentil proteins in combination with maltodextrin; and c) test the oxidative stability of encapsulated flaxseed oil with the capsule design with the lowest surface oil and highest encapsulation efficiency versus free oil. During the first study, the physicochemical and emulsifying properties of lentil protein isolates (LPI) were investigated as a function of their degree of hydrolysis (DH of 4, 9 and 20%) following exposure to trypsin/heat. Interfacial tension, surface characteristics (charge and hydrophobicity) and intrinsic fluorescence were determined and related to changes in the emulsification activity (EAI) and stability indices (ESI) of unhydrolyzed (u-LPI) and hydrolyzed LPI (h-LPI) in a flaxseed oil-water emulsion. Most importantly surface hydrophobicity declined from ~30 to ~24 for the u-LPI and h-LPI (DH 4-20%), respectively. The changes in physicochemical properties induced by hydrolysis had a detrimental effect on EAI and ESI values, which declined from ~51 to ~47 m2 g-1 and ~12 to ~ 11 min for u-LPI and h-LPI (DH 4-20%), respectively. In the second study, the physicochemical properties of encapsulated flaxseed oil within lentil protein-based maltodextrin microcapsules were investigated using native (n-LPI), pre-treated (heated, un-hydrolyzed (u-LPI); and heated, hydrolyzed (h-LPI)) lentil protein isolates and as a function of oil load (10.0, 20.0 and 30.0% of total solids). The moisture, water activity, surface oil and encapsulation efficiency (EE) were assessed, along with droplet size and emulsion morphology. Light microscopy imaging of the emulsions, showed that the h-LPI had slightly larger oil droplets than the n-LPI and u-LPI, which both appeared similar. Microcapsules prepared from h-LPI showed significantly higher surface oil and lower EE than both the n-LPI and u-LPI materials. The microcapsules prepared using n-LPI with 10.0% oil loading were found to have the lowest surface oil content (~3.7%) and highest EE (~62.8%) for all formulations, and were subjected to an oxidative storage stability test over a 30 d period vs. free oil. The encapsulation process however induced autooxidation leading the production of a greater amount of primary oxidative products than free oil. Findings indicate that future studies are necessary to enhance the stability of the flaxseed oil through the encapsulation process.

Page generated in 0.0812 seconds