• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 13
  • 11
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 87
  • 38
  • 27
  • 24
  • 22
  • 20
  • 17
  • 14
  • 13
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Transport of Components and Phases in a Surfactant/Foam

Lopez Salinas, Jose 24 July 2013 (has links)
The transport of components and phases plays a fundamental role in the success of an EOR process. Because many reservoirs have harsh conditions of salinity, temperature and rock heterogeneity, which limit process options, a robust system with flexibility is required. Systematic experimental study of formulations capable to transport surfactant as foam at 94°C, formulated in sea water, is presented. It includes methodology to conduct core floods in sand packs using foaming surfactants and to develop “surfactant blend ratio- salinity ratio maps” using equilibrium phase behavior to determine favorable conditions for oil recovery in such floods. Mathematical model able to reproduce the foam strength behavior observed in sand packs with the formulations studied is presented. Visualization of oil recovery mechanism from matrix is realized using a model system of micro-channels surrounded by glass beads to mimic matrix and fractures respectively. The observations illustrate how components may distribute within the matrix, thereby releasing oil into the fractures. The use of chemicals to minimize adsorption is required when surfactant adsorption is important. The presence of anhydrite may limit the use of sodium carbonate to reduce adsorption of carbonates. A methodology is presented to estimate the amount, if any, of anhydrite present in the reservoir. The method is based on brine software analysis of produced water compositions and inductively coupled plasma (ICP) analysis of core samples. X-ray powder diffraction (XRD) was used to verify the mineralogy of the rock. X-ray photoelectron spectroscopy (XPS) was used to obtain surface composition for comparison with bulk composition of the rock. Adsorption of surfactants was measured using dynamic and static adsorption experiments. Determining the flow properties of the rock samples via tracer analysis permitted the simulation of the dynamic adsorption process using a mathematical model that considers the distribution of adsorbed materials in the three different regions of pore space. Using this method allows one to predict adsorption in a reservoir via simulation.
62

Simulating Oil Recovery During Co2 Sequestration Into A Mature Oil Reservoir

Pamukcu, Yusuf Ziya 01 August 2006 (has links) (PDF)
The continuous rising of anthropogenic emission into the atmosphere as a consequence of industrial growth is becoming uncontrollable, which causes heating up the atmosphere and changes in global climate. Therefore, CO2 emission becomes a big problem and key issue in environmental concerns. There are several options discussed for reducing the amount of CO2 emitted into the atmosphere. CO2 sequestration is one of these options, which involves the capture of CO2 from hydrocarbon emission sources, e.g. power plants, the injection and storage of CO2 into deep geological formations, e.g. depleted oil reservoirs. The complexity in the structure of geological formations and the processes involved in this method necessitates the use of numerical simulations in revealing the potential problems, determining feasibility, storage capacity, and life span credibility. Field K having 32o API gravity oil in a carbonate formation from southeast Turkey was studied. Field K was put on production in 1982 and produced until 2006, which was very close to its economic lifetime. Thus, it was considered as a candidate for enhanced oil recovery and CO2 sequestration. Reservoir rock and fluid data was first interpreted with available well logging, core and drill stem test data. Monte Carlo simulation was used to evaluate the probable reserve that was 7 million STB, original oil in place (OOIP). The data were then merged into CMG/STARS simulator. History matching study was done with production data to verify the results of the simulator with field data. After obtaining a good match, the different scenarios were realized by using the simulator. From the results of simulation runs, it was realized that CO2 injection can be applied to increase oil recovery, but sequestering of high amount of CO2 was found out to be inappropriate for field K. Therefore, it was decided to focus on oil recovery while CO2 was sequestered within the reservoir. Oil recovery was about 23% of OOIP in 2006 for field K, it reached to 43 % of OOIP by injecting CO2 after defining production and injection scenarios, properly.
63

Investigation Of Productivity Of Heavy Oil Carbonate Reservoirs And Oil Shales Using Electrical Heating Methods

Hascakir, Berna 01 September 2008 (has links) (PDF)
The recovery characteristics of Bolu-Himmetoglu, Bolu-Hatildag, K&uuml / tahya- Seyit&ouml / mer, and Nigde-Ulukisla oil shale samples and Bati Raman, &Ccedil / amurlu, and Garzan crude oil samples were tested experimentally using retort and microwave heating techniques. Many parameters like heating time, porosity, water saturation were studied. To enhance the efficiency of the processes three different iron powders (i.e. / Fe, Fe2O3, and FeCl3) were added to the samples and the doses of the iron powders were optimized. While crude oil viscosities were measured to explain the fluid rheologies, since it is impossible to measure the shale oil viscosity at the laboratory conditions due to its very high viscosity, shale oil viscosities were obtained numerically by using the electrical heating option of a reservoir simulator (CMG, STARS 2007) by matching between the laboratory and numerical oil production and temperature distribution results. Then the field scale simulations for retorting of oil shale and crude oil fields were conducted. Since the microwave heating cannot be simulated by CMG, STARS, microwave heating was modeled analytically. In order to explain the feasibility of heating processes, an economic evaluation was carried out. The experimental, numerical, and analytical results show that field scale oil recovery from oil shales and heavy crude oils by electrical and electromagnetic heating could be economically viable. While microwave heating is advantageous from an operational point of view, retorting is advantageous if the technically feasibility of the study is considered.
64

Forecasting of isothermal enhanced oil recovery (EOR) and waterflood processes

Mollaei, Alireza 06 February 2012 (has links)
Oil production from EOR and waterflood processes supplies a considerable amount of the world's oil production. Therefore, the screening and selection of the best EOR process becomes important. Numerous steps are involved in evaluating EOR methods for field applications. Binary screening guides in which reservoirs are selected on the basis of reservoir average rock and fluid properties are consulted for initial determination of applicability. However, quick quantitative comparisons and performance predictions of EOR processes are more complicated and important than binary screening that are the objectives of EOR forecasting. Forecasting (predicting) the performance of EOR processes plays an important role in the study, design and selection of the best method for a particular reservoir or a collection of reservoirs. In EOR forecasting, we look for finding ways to get quick quantitative results of the performance of different EOR processes using analytical model/s before detailed numerical simulations of the reservoirs under study. Although numerical simulation of the reservoirs is widely used, there are significant obstacles that restrict its applicability. Lack of necessary reservoir data and time consuming computations and analyses can be barriers even for history matching and/or predicting EOR/waterflood performance of one reservoir. There are different forecasting (predictive) models for evaluation of different secondary/tertiary recovery methods. However, lack of a general purpose EOR/waterflood forecasting model is unsatisfactory because any differences in results can be caused by differences in the model rather than differences in the processes. As the main objective of this study, we address this deficiency by presenting a novel and robust analytical-base general EOR and waterflood forecasting model/tool (UTF) that does not rely on conventional numerical simulation. The UTF conceptual model is based on the fundamental law of material balance, segregated flow and fractional flux theories and is applied for both history matching and forecasting the EOR/waterflood processes. The forecasting model generates the key results of isothermal EOR and waterflooding processes including variations of average oil saturation, recovery efficiency, volumetric sweep efficiency, oil cut and oil rate with real or dimensionless time. The forecasting model was validated against field data and numerical simulation results for isothermal EOR and waterflooding processes. The forecasting model reproduced well (R2> 0.8) all of the field data and reproduced the simulated data even better. To develop the UTF for forecasting when there is no injection/production history data, we used experimental design and numerical simulation and successfully generated the in-situ correlations (response surfaces) of the forecasting model variables. The forecasting model variables were proven to be well correlated to reservoir/recovery process variables and can be reliably used for forecasting. As an extension to the abilities of the forecasting model, these correlations were used for prediction of volumetric sweep efficiency and missing/dynamic pore volume of EOR and waterflooding processes. / text
65

Mobility control of CO₂ flooding in fractured carbonate reservoirs using faom with CO₂ soluble surfactant

Zhang, Hang 06 November 2012 (has links)
This work investigates the performance of CO₂ soluble surfactants used for CO₂ foam flooding in fractured carbonate reservoirs. Oil recovery associated with the reduction of CO₂ mobility in fractures is assessed by monitoring oil saturation and pressure drops during injection of CO₂ with aqueous surfactant solution in artificially fractured carbonate cores. Distinct novel CO₂ soluble surfactants are evaluated as well as a conventional surfactant. Water flooding and pure CO₂ injection are conducted as baseline. Characterization of fluids and rock are also reported which include Amott test, oil phase behavior and slim tube test. Transport and thermodynamic properties of surfactant and supercritical CO₂ are used to evaluate the process on a core scale using a commercial reservoir simulator. / text
66

Écoulements de fluides complexes en milieu poreux : utilisation de micelles géantes pour la Récupération Améliorée du Pétrole

Tognisso, Djivede Elvire 09 November 2011 (has links)
Parmi les méthodes de Récupération Améliorée du Pétrole (RAP) il en existe une, dite chimique, qui fait appel à des fluides complexes (polymères, gels, tensioactifs) qui permet de modifier la viscosité et/ou la tension interfaciale Les solutions de polymères utilisées actuellement présentent l’inconvénient d’être sensibles de manière irréversible aux taux de cisaillement élevés observés au voisinage des puits. Une alternative à ces solutions de polymères pourrait nous être donnée par l’utilisation de micelles géantes. Il s’agit d’auto-assemblages de molécules amphiphiles dont le comportement est similaire à celui des polymères avec l’avantage d’une meilleure stabilité aux cisaillements élevés (capacité des micelles à se reformer après cisaillement).L’objectif de ce travail est d’étudier l’écoulement d’une solution de micelles géantes en milieu poreux, dans le but de déterminer son éventuelle utilité dans le RAP. Il s’agit d’une caractérisation en milieu poreux à l’échelle du laboratoire, utilisant des milieux poreux naturels, de façon à se placer dans un cadre d’étude le plus réaliste possible. Cette étude se divise en trois parties :- Une étude rhéologique de la solution de micelles géantes- Une étude monophasique de l’injection de la solution dans un milieu poreux naturel- Une étude diphasique du déplacement d’huile par la solution de micelles.Les résultats de cette étude seront comparés avec des expériences références utilisant des techniques classiques de récupération telles que l’ASP et l’injection de polymères / Among all the Enhanced Oil Recovery (EOR) methods used to improve oil recovery, chemical methods require the use of complex fluids like polymers or surfactant solutions. Those fluids present particular chemical and mechanical properties allowing to modify viscosity and/or interfacial tension to increase oil recovery. However, polymer solutions show a high sensitivity to shear rates existing close to wells and may lose their mechanical properties when they are injected in a porous media. An alternative method could be to use self arrangement of surfactant molecules (wormlike micelles) to displace oil in porous media. These systems show not only a similar behaviour as polymers but also a low sensibility to temperature and shear rates.The goal of this experimental work is to study the flow of wormlike micelle solutions innatural porous media in order to determine its ability to flow and displace oil in place. Itconsists in a characterization at laboratoty scale. We will use natural porous media in orderto be close to a realistic situation. This study is divided in three parts:- A rheological characterization of the micellar system- A monophasic injection within the porous medium- A diphasic _ow study of oil displacementThe results of this work are compared to standard reference experiments using classicaltechniques such as ASP or polymer injection.
67

[en] SIMULATION OF INJECTION PROCESS FOR VISCOELASTIC POLYMER SOLUTION IN A RESERVOIR SCALE / [pt] SIMULAÇÃO DO PROCESSO DE INJEÇÃO DE SOLUÇÕES POLIMÉRICAS VISCOELÁSTICAS NA ESCALA DE RESERVATÓRIO

JULIA FROTA RENHA 25 July 2016 (has links)
[pt] Com o objetivo de aumentar a capacidade dos poços petrolíferos, métodos convencionais de recuperação são utilizados, os quais consistem na injeção de água ou gás para a manutenção da pressão do reservatório. A produção do óleo ocorre através do deslocamento do mesmo no espaço poroso, onde a água, fluido deslocante, é injetada para ocupar gradualmente o espaço do óleo, fluido deslocado. Devido aos efeitos capilares e às heterogeneidades do meio poroso, uma parcela de óleo residual acaba ficando retida no reservatório, apresentando baixo fator de recuperação de óleo devido a elevada viscosidade do óleo em relação à viscosidade do fluido injetado e altas tensões interfaciais entre os fluidos. A adição de polímeros à água garante um aumento na sua viscosidade, melhorando a razão de mobilidade água/óleo no meio poroso. Uniformizando a frente de avanço e melhorando a eficiência de varrido devido à melhora no deslocamento do óleo. O presente trabalho analisa o comportamento viscoelástico do polímero, isolando o efeito viscoso e elástico em função das taxas de cisalhamento e extensão, implementado em um modelo de simulação de injeção de polímeros na escala de reservatórios. O efeito das propriedades reológicas da solução polimérica mostram nos resultados de produção uma frente de avanço mais estável e consequentemente uma melhora na taxa de recuperação de óleo quando avaliou-se o comportamento puramente cisalhante. Entretanto uma melhora na taxa de recuperação e na estabilidade da frente de avanço para o comportamento puramente extensional só pode ser observado quando o número de capilaridade foi aumentado consideravelmente. / [en] Aiming to increase the capacity of oil fields, conventional recovery methods are used. These methods consist in the injection of water or gas to maintain the reservoir pressure. The oil production typically takes place by displacing this oil in the porous media, where the displacing fluid (water) is injected to gradually occupy the space of the displaced fluid (oil). Since due to capillary effects and the heterogeneity of the porous media, a residual oil portion ends up trapped in the reservoir. These methods lead to low values of oil recovery factor, which occurs mainly by two factors: high viscosity of the reservoir s oil in relation to the viscosity of the injected fluid and high interfacial tension between the fluids. The addition of polymers to the water ensures an increase in the viscosity of the injected fluid, improving mobility ratio between water and oil in the porous media. Thus, standardizing forward swept and improving the swept efficiency due to improved oil displacement, which reduces the formation of preferential paths in the reservoir, usually called fingers. This paper analyzes the viscoelastic behavior of the polymer, by isolating the viscous and elastic effect in function of its extension and shear rates, implemented in a polymer injection simulation model in a reservoir scale. The effect of the rheological properties of the polymer solution show in the production results a more stable injection front and consequently an oil recovery rate improvement when evaluated as a purely shear behavior. However an improvement in the recovery rate and stability of the injection front for pure extensional behavior can only be observed when the capillary number is increased considerably.
68

Influences of Subcritical Water in Porosity and Fracture Aperture of Unconventional Shale

Hasan, Md Rifat 20 September 2019 (has links)
No description available.
69

[en] IMPROVED HEAVY OIL RECOVERY BY INJECTION OF DILUTED OIL-IN-WATER EMULSIONS / [pt] RECUPERAÇÃO AVANÇADA DE ÓLEOS PESADOS POR INJEÇÃO DE EMULSÕES DILUÍDAS DE ÓLEO EM ÁGUA

MANOEL LEOPOLDINO ROCHA DE FARIAS 09 January 2015 (has links)
[pt] A injeção de água é o método de recuperação secundário mais utilizado no mundo. Mesmo em situações em que esse método não é o mais adequado, a facilidade de implantação e os menores custos comparativos impõem esse método como a opção selecionada. Em campos de óleo pesado, a razão de mobilidade desfavorável e as heterogeneidades de reservatório precipitam a formação de digitações viscosas e altos valores de saturação residual de óleo, levando a baixos fatores finais de recuperação. Os poços produtores desses campos produzem com altas frações de água muito rapidamente. O tratamento da água produzida é o principal custo operacional desses campos. O uso de emulsões diluídas de óleo em água foi avaliado como método de controle de mobilidade. Foi desenvolvido um extenso programa experimental em sandpacks de areia de sílica e plugs de arenito (Berea e Bentheimer) de forma a comparar as recuperações finais de óleo, perfis de pressão de injeção e razões água-óleo acumuladas nos casos de injeção de água, injeção de surfactantes e macroemulsões. Todos os meios porosos ensaiados foram saturados com petróleo cru originário da Bacia de Campos (20 graus API). Um estudo paramétrico foi feito de forma a identificar a influência da vazão de injeção, distribuição de tamanhos de gotas de óleo emulsionadas, concentração de óleo e permeabilidade no desempenho das emulsões injetadas. O programa foi complementado com um ensaio 3D (arenito Castlegate na configuração um quarto de five-spot) onde o fluido injetado foi dopado com Iodeto de Potássio para permitir melhor visualização da modificação de saturações de óleo e água com um tomógrafo de raios X. Os resultados obtidos indicaram ganhos na produção de óleo e redução da razão água-óleo acumulada. A possibilidade de preparar as emulsões óleo-água a serem injetadas a partir da água produzida pelo próprio campo traz um grande ganho ambiental ao se reduzir o descarte superficial de água oleosa. O efluente se transforma em um recurso. / [en] Water injection is the most used secondary recovery method in the world. This option is generally chosen even in situations where it is not the most efficient alternative to recover the oil due to its comparative simple implementation and lower operational costs. In heavy oilfields, the unfavorable mobility ratio between injection and displaced fluids in addition to reservoir heterogeneities cause water fingering phenomenon, high residual oil saturation and consequently poor final oil recoveries. Producer wells start to produce high water cuts very soon. Produced water treatment for surface disposal is the main operational cost in these oilfields. The use of diluted oil-in-water macroemulsions was evaluated as a mobility control method for these cases. An extensive experimental program was performed using silica sandpacks and sandstone plugs (Berea and Bentheimer) in order to evaluate final oil recovery factors, cumulative water-oil ratio and pressure behavior, comparing water injection, surfactant solution injection and oil-in-water injection. All porous media were saturated with crude oil from Campos Basin (20 degrees API). A parametric study was performed to identify the effect of injection rate, oil droplets size distributions, emulsion oil concentration and permeability level in emulsion injection performance. The experimental program was completed by an X-Ray computerized tomography monitored experiment in a Castlegate sandstone block (1/4 five-spot configuration). This block was submitted to an alternate water/emulsion/water injection. All injection fluids were doped with Potassium Iodide in order to better visualize oil and water saturations changes during this experiment. The results obtained have indicated final oil recovery improvement and cumulative water/oil reduction. The possibility, after some treatment, to prepare diluted oil-in-water emulsions using produced water from the oilfield brings the additional environmental benefit to emulsion injection. It would be a way to convert an effluent in a resource with clear environmental advantages.
70

Experimental studies on displacements of CO₂ in sandstone core samples

Al-Zaidi, Ebraheam Saheb Azeaz January 2018 (has links)
CO2 sequestration is a promising strategy to reduce the emissions of CO2 concentration in the atmosphere, to enhance hydrocarbon production, and/or to extract geothermal heat. The target formations can be deep saline aquifers, abandoned or depleted hydrocarbon reservoirs, and/or coal bed seams or even deep oceanic waters. Thus, the potential formations for CO2 sequestration and EOR (enhanced oil recovery) projects can vary broadly in pressure and temperature conditions from deep and cold where CO2 can exist in a liquid state to shallow and warm where CO2 can exist in a gaseous state, and to deep and hot where CO2 can exist in a supercritical state. The injection, transport and displacement of CO2 in these formations involves the flow of CO2 in subsurface rocks which already contain water and/or oil, i.e. multiphase flow occurs. Deepening our understanding about multiphase flow characteristics will help us building models that can predict multiphase flow behaviour, designing sequestration and EOR programmes, and selecting appropriate formations for CO2 sequestration more accurately. However, multiphase flow in porous media is a complex process and mainly governed by the interfacial interactions between the injected CO2, formation water, and formation rock in host formation (e.g. interfacial tension, wettability, capillarity, and mass transfer across the interface), and by the capillary , viscous, buoyant, gravity, diffusive, and inertial forces; some of these forces can be neglected based on the rock-fluid properties and the configuration of the model investigated. The most influential forces are the capillary ones as they are responsible for the entrapment of about 70% of the total oil in place, which is left behind primary and secondary production processes. During CO2 injection in subsurface formations, at early stages, most of the injected CO2 (as a non-wetting phase) will displace the formation water/oil (as a wetting phase) in a drainage immiscible displacement. Later, the formation water/oil will push back the injected CO2 in an imbibition displacement. Generally, the main concern for most of the CO2 sequestration projects is the storage capacity and the security of the target formations, which directly influenced by the dynamic of CO2 flow within these formations. Any change in the state of the injected CO2 as well as the subsurface conditions (e.g. pressure, temperature, injection rate and its duration), properties of the injected and present fluids (e.g. brine composition and concentration, and viscosity and density), and properties of the rock formation (e.g. mineral composition, pore size distribution, porosity, permeability, and wettability) will have a direct impact on the interfacial interactions, capillary forces and viscous forces, which, in turn, will have a direct influence on the injection, displacement, migration, storage capacity and integrity of CO2. Nevertheless, despite their high importance, investigations have widely overlooked the impact of CO2 the phase as well as the operational conditions on multiphase characteristics during CO2 geo-sequestration and CO2 enhanced oil recovery processes. In this PhD project, unsteady-state drainage and imbibition investigations have been performed under a gaseous, liquid, or supercritical CO2 condition to evaluate the significance of the effects that a number of important parameters (namely CO2 phase, fluid pressure, temperature, salinity, and CO2 injection rate) can have on the multiphase flow characteristics (such as differential pressure profile, production profile, displacement efficiency, and endpoint CO2 effective (relative) permeability). The study sheds more light on the impact of capillary and viscous forces on multiphase flow characteristics and shows the conditions when capillary or viscous forces dominate the flow. Up to date, there has been no such experimental data presented in the literature on the potential effects of these parameters on the multiphase flow characteristics when CO2 is injected into a gaseous, liquid, or supercritical state. The first main part of this research deals with gaseous, liquid, and supercritical CO2- water/brine drainage displacements. These displacements have been conducted by injecting CO2 into a water or brine-saturated sandstone core sample under either a gaseous, liquid or supercritical state. The results reveal a moderate to considerable impact of the fluid pressure, temperature, salinity and injection rate on the differential pressure profile, production profile, displacement efficiency, and endpoint CO2 effective (relative) permeability). The results show that the extent and the trend of the impact depend significantly on the state of the injected CO2. For gaseous CO2-water drainage displacements, the results showed that the extent of the impact of the experimental temperature and CO2 injection rate on multiphase flow characteristics, i.e. the differential pressure profile, production profile (i.e. cumulative produced volumes), endpoint relative permeability of CO2 (KrCO2) and residual water saturation (Swr) is a function of the associated fluid pressure. This indicates that for formations where CO2 can exist in a gaseous state, fluid pressure has more influence on multiphase flow characteristics in comparison to other parameters investigated. Overall, the increase in fluid pressure (40-70 bar), temperature (29-45 °C), and CO2 injection rate (0.1-2 ml/min) caused an increase in the differential pressure. The increase in differential pressure with increasing fluid pressure and injection rate indicate that viscous forces dominate the multi-phase flow. Nevertheless, increasing the differential pressure with temperature indicates that capillary forces dominate the multi-phase flow as viscous forces are expected to decrease with this increasing temperature. Capillary forces have a direct impact on the entry pressure and capillary number. Therefore, reducing the impact of capillary forces with increasing pressure and injection rate can ease the upward migration of CO2 (thereby, affecting the storage capacity and integrity of the sequestered CO2) and enhance displacement efficiency. On the other hand, increasing the impact of the capillary force with increasing temperature can result in a more secure storage of CO2 and a reduction in the displacement efficiency. Nevertheless, the change in pressure and temperature can also have a direct impact on storage capacity and security of CO2 due to their impact on density and hence on buoyancy forces. Thus, in order to decide the extent of change in storage capacity and security of CO2 with the change in the above-investigated parameters, a qualitative study is required to determine the size of the change in both capillary forces and buoyancy forces. The data showed a significant influence of the capillary forces on the pressure and production profiles. The capillary forces produced high oscillations in the pressure and production profiles while the increase in viscous forces impeded the appearance of these oscillations. The appearance and frequency of these oscillations depend on the fluid pressure, temperature, and CO2 injection rate but to different extents. The appearance of the oscillations can increase CO2 residual saturation due to the re-imbibition process accompanied with these oscillations, thereby increasing storage capacity and integrity of the injected CO2. The differential pressure required to open the blocked flow channels during these oscillations can be useful in calculating the largest effective pore diameters and hence the sealing efficiency of the rock. Swr was in ranges of 0.38-0.42 while KrCO2 was found to be less than 0.25 under our experimental conditions. Increasing fluid pressure, temperature, and CO2 injection rate resulted in an increase in the KrCO2, displacement efficiency (i.e. a reduction in the Swr), and cumulative produced volumes. For liquid CO2-water drainage displacements, the increase in fluid pressure (60-70 bar), CO2 injection rate (0.4-1ml/min) and salinity (1% NaCl, 5% NaCl, and 1% CaCl2) generated an increase in the differential pressure; the highest increase occurred with increasing the injection rate and the lowest with increasing the salinity. On the other hand, on the whole, increasing temperature (20-29 °C) led to a reduction in the differential pressure apart from the gradual increase occurred at the end of flooding.

Page generated in 0.0492 seconds