Spelling suggestions: "subject:"epidermal growth factor receptor"" "subject:"épidermal growth factor receptor""
21 |
Epidermal growth factor receptor localization at the mitochondriaDemory, Michelle Lynne. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
|
22 |
A novel mechanism for the anti-cancer activity of aspirin and its analoguesBashir, Asma'u Ismail Junaidu January 2017 (has links)
Colorectal cancer (CRC), which includes cancer of the large bowel and rectum is the third most common cancer in men and the second in women and there is a poorer survival rate in less developed regions of the world such as West Africa mainly due to the ‘out of reach’ costs of chemotherapy. Evidence suggests that aspirin, a non-steroidal anti-inflammatory drug (NSAID) has the potential to decrease incidence of, or mortality from, a number of cancers including CRC through several mechanisms of action. However, this evidence is dampened by aspirin’s gastrointestinal (GI) toxicity, which have been found to be mostly age-dependent. The search for potential aspirin-related compounds with the same or better cytotoxic effects against cancer cells accompanied by a safer toxicity profile has been ongoing over the years and led to us to synthesise a number of novel aspirin analogues. One of the mechanisms of action suggested for the anticancer property of aspirin is the COX-dependent pathway. In this thesis SW480 cell line, a CRC cell line that is COX-2 negative and mismatch repair (MMR) proficient was used to study the possible COX-independent mechanism of action for aspirin, its analogues and diflunisal at 0.5 mM. Diflunisal was included in this study because it is also a salicylate with reports of having cytotoxic effects. OE33 and FLO1 oesophageal cancer cells were also employed in the epidermal growth factor receptor (EGFR) and synergy experiments to show effects were not just specific to SW480 cells alone. These aspirin analogues were synthesised, identified using nuclear magnetic resonance (NMR) and infra-red (IR) spectroscopy, and tested for purity using thin layer chromatography (TLC) and melting point. The findings of this study suggest that these compounds breakdown into salicylates and perturb epidermal growth factor (EGF) internalization with PN517 (fumaryldiaspirin) and PN590 (ortho-thioaspirin) also driving EGF co-localization with early-endosome antigen-1 (EEA1). The perturbation of the internalization of EGF by aspirin and PN517 was also observed by a time-lapse assay using live confocal imaging. These compounds also had specific effects on different tyrosine phosphorylation sites of the EGFR, with none but PN590 inhibiting 4 phosphorylation at Y1068, and all but PN502 (ortho-aspirin), PN548 (meta-aspirin) and PN549 (para-aspirin) inhibiting phosphorylation at Y1045 and Y1173. Given that the EGF internalization assay involved the cells being treated with compounds for 2 h, cells were also treated for this same time period and probed with pEGFR 1045, which resulted in the compounds having no significant effect on phosphorylation at that site which is responsible for the ubiquitination of the EGFR. Most of these compounds were apoptotic with some showing a combination of apoptosis and necrosis. Aspirin and its isomers drove apoptotic cell death in SW480 cells via the BCL2-BAX pathway while the thioaspirins appear to follow the p21 pathway by decreasing the expression of the protein. In addition, it was shown that PN502 (aspirin), PN517 and PN590 had synergistic effects when used in combination with oxaliplatin at ED50, ED75 and ED90 in SW480 CRC cells. The cytotoxicity of these compounds individually or in combination was determined using MTT assay followed by the use of the CompuSyn and CalcuSyn software to calculate combination index (CI), which indicated whether a drug combination was synergistic, antagonistic or additive. PN517 and PN524 were synergistic when used in combination with cisplatin in OE33 oesophageal cancer cells. Effect of these compounds on the EGFR indicates a delay or disruption of the signalling pathway involved in the proliferation of cancer cells, thus, translating into protection against tumour formation or progression while the synergistic effects of these compounds when used in combination with platinum compounds can provide patients with less toxic chemotherapeutic regimen especially in patients with CRC tumours that harbour mutant TP53 gene and normally resistant to oxaliplatin. It is therefore proposed that the perturbation of EGF internalization is a novel mechanism of action for aspirin and its analogues in cancer therapy. These positive findings shed light on the understanding of the possible mechanism of action for aspirins and gives hope for a more affordable, less toxic therapy for the prevention, treatment and management of cancer.
|
23 |
Computational Studies on Prostatic Acid PhosphataseSharma, S. (Satyan) 05 December 2008 (has links)
Abstract
Histidine acid phosphatases are characterized by the presence of a conserved RHGXRXP motif. One medically important acid phosphatase is the Prostatic Acid Phosphatase (PAP). PAP has been associated with prostate cancer for a long time and has been used as a marker to stage prostate carcinoma. Yet, there is no clear understanding on the functioning of the enzyme in vivo. This thesis work focuses on the characterization of putative ligands and elucidation of the reaction mechanism of PAP using computational methods.
The ligand-enzyme complexes were generated by docking and molecular dynamics simulations. The complexes showed that the conserved arginines of RHGXRXP motif are important for binding the highly negatively charged phosphate group. The complexes also highlighted that the active site aspartate (Asp258) should be neutral in the complex and is involved as a general acid-base in the reaction. The studies support that PAP could dephosphorylate the growth factor receptors EGFR and ErbB-2. The studies also found that the majority of tyrosine phosphorylated peptides from these growth factor receptors could bind to PAP. The affinities were assessed based on theoretical calculations and were further confirmed by experimental measurements in the feasible cases.
To clearly understand the mechanism of PAP, quantum mechanical methods were employed. The enzymatic reaction involves two steps. In the first step, the phosphate moiety is transferred from the ligand to the conserved histidine. The calculations on the first step of the reaction involved generating the transition state (TS) structures and estimating the respective barriers. The calculations clearly support that Asp258 becomes neutral by picking up the proton from the monoanionic ligand entering the binding site. The proton from neutral Asp258 is later transferred to the leaving group via a water bridge, restoring the negative state of Asp258.
The second step involves the hydrolysis of phosphohistidine enzyme intermediate. Using hybrid quantum mechanics/molecular mechanics calculations, it was found that the Asp258 accepts a proton from the nucleophilic water only after the TS is crossed. This proton is possibly then transferred to the free phosphate while it leaves the binding site, restoring the enzyme to its free state.
The study highlights the importance of active site arginines in the binding as well as the stabilization of TS. Further, the analysis of TS structures in both the steps showed an associative mechanism, based on the distance of the nucleophilic and the leaving atoms to the phosphate atom. These distances are much smaller than what has been found in other well studied nonmetallo-phopshatases. Thus, the study finds a novel mechanism of enzymic phosphotransfer in PAP mediated catalysis.
|
24 |
INVESTIGATING THE MOLECULAR INTERACTION OF ERBB RECEPTOR TYROSINE KINASES USING FLUORESCENCE CROSS CORRELATION SPECTROSCOPYKIM, SOYEON 04 October 2021 (has links)
No description available.
|
25 |
RADIATION INDUCED DIFFERENTIAL EXPRESSION OF PROTEINS IN THE INTESTINE OF EGFR COMPROMISED MICEIyer, Radhika January 2005 (has links)
No description available.
|
26 |
Epidermal growth factor receptor in equine gastric stratified squamous mucosa: effect of progressive ulceration on receptor densityJeffrey, Stuart C. 18 September 2008 (has links)
The objective of the study reported here was to document the distribution of epidermal growth factor receptor (EGFr) and quantitate receptor density in normal as well as ulcerated equine gastric squamous mucosa. Fifteen horses with endoscopically normal stomachs were divided into three equal groups. Group 1 was a normal control. A protocol that alternated 24 hour periods of free-choice hay with 24 hours of feed deprivation was utilized to induce squamous mucosal gastric ulceration in Group 2 (48 hours total off-feed) and Group 3 (96 hours total off-feed). Gastric tissue was collected from 3 stomach locations at post-mortem examination and an avidin-biotin immunoperoxidase technique was developed to stain the formalin-fixed tissue for EGFr. A computerized image analysis system was used to measure EGFr area and mean intensity values at four sites within the epithelium from the basal cell layers to the lumen in the ulcer/erosion margin, erosion bed, and 10-14 mm distant from the lesion. / Master of Science
|
27 |
Phytochemicals from Graviola fruit selectively inhibit breast cancer cells growth involving EGFR signaling pathwayDai, Yumin 01 June 2010 (has links)
There is a growing interest in using naturally-occurring compounds as cancer chemopreventive or chemotherapeutic agents. This study investigated the anticancer potential of the graviola fruit extract (GFE) on specific human breast cancer (BC) cells. GFE was found in our preliminary screening to selectively inhibit the growth of certain human BC cells (MDA-MB-468) but did not affect non-transformed breast epithelial MCF-10A cells. GFE treatment was very effective against the growth of MDA-MB-468 BC cells with an IC50 of 4.8 µg/ml. In vitro, effects of GFE treatment on MDA-MB-468 BC cells were further examined for apoptosis and cell proliferation. Apoptosis, determined qualitatively and quantitatively, was enhanced and accompanied by caspase-3 activation. GFE treatment also induced cell cycle arrest at the G1 cell cycle phase and significantly reduced the percentage of MDA-MB-468 cells in S-phase following 24h of exposure. Moreover, the results from analysis of the mRNA expression of epidermal growth factor receptor (EGFR), which plays an important role in regulating cell development and death, by qRT-PCR, suggested that GFE-induced selective growth inhibition of MDA-MB-468 BC cells is associated with a significant inhibition of EGFR gene expression in the cells. In vivo, dietary treatment with GFE significantly inhibited MDA-MB-468 tumor growth implanted in mice by reducing tumor wet weight and significantly reduced EGFR and p-ERK protein expression in tumors. Overall, GFE attenuated cell proliferation, induced apoptosis, modulated cell cycle regulation and downregulated EGFR gene expression both in vitro and in vivo. These discoveries support the further studies to fully elucidate the antitumor potential of GFE and its components as a dietary agent for BC. / Master of Science in Life Sciences
|
28 |
Androgen controlled regulatory systems in prostate cancer : potential new therapeutic targets and prognostic markersHammarsten, Peter January 2008 (has links)
BACKGROUND: Prostate cancer is by far the most common cancer among Swedish men. Some patients have an aggressive lethal disease, but the majority of affected men have long expected survival. Unfortunately, the diagnostic tools available are insufficient in predicting disease aggressiveness. Novel prognostic markers are therefore urgently needed. Furthermore, metastatic prostate cancer is generally treated with castration, but the long-term effects are insufficient. Additional studies are therefore needed to explore how the effects of this therapy can be enhanced. Prostate growth and regression is beside testosterone controlled by locally produced regulators. Vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) are two of the major regulators in the normal prostate and in prostate tumours. MATERIALS AND METHODS: VEGF and EGFR were explored in the prostate, by treating rats with either anti-VEGF or anti-EGFR treatment during castration and testosterone-stimulated prostate growth. Rats with implanted androgen-independent prostate tumours were treated with an inhibitor of both VEGF receptor-2 (VEGFR-2) and EGFR. Stereological techniques, immunohistochemistry, western blotting and quantitative real-time PCR were used to evaluate these experiments. Furthermore, prostate tissue from untreated prostate cancer patients was used to retrospectively explore the expression of phosphorylated-EGFR (pEGFR) in relation to outcome. RESULTS: Anti-VEGF treatment during testosterone-stimulated prostate growth, inhibited vascular and prostate growth. Anti-EGFR treatment during castration and testosterone-stimulated prostate growth resulted in enhanced castration effects and inhibited prostate growth. Anti-vascular treatment of androgen-independent prostate cancer with an inhibitor of VEGFR-2 and EGFR, that targets the normal and tumour vasculature, enhanced the effects of castration. Low immunoreactivity for pEGFR in prostate epithelial cells, both in the tumour and also in the surrounding non-malignant tissue, was associated with good prognosis. CONCLUSIONS: Anti-vascular treatment, with an inhibitor of VEGFR-2 and EGFR, in combination with castration could be an effective way to treat androgen-insensitive prostate tumours. VEGF and EGFR signalling are necessary components in testosterone-stimulated prostate growth. Phosphorylation of EGFR could be a useful prognostic marker for prostate cancer patients. Tumours may affect the surrounding non-malignant tissue and pEGFR immunoreactivity in the morphologically normal prostate tissue can be used to retrieve prognostic information.
|
29 |
Virus de l'hépatite C, Nétrine-1 et réponse aux protéines mal repliées en contexte hépatique / Hepatitis C virus, Netrin-1 and the unfolded protein response in a hepatic contextLahlali, Thomas 16 December 2014 (has links)
Les connaissances actuelles en pathologie hépatique suggèrent que HCV n'est pas directement oncogénique mais expose les patients au risque de cancer du foie dans un contexte inflammatoire associé à une réponse UPR (Unfolded Protein Response) et une régénération hépatique. La nétrine-1, le ligand canonique de la famille des DRs (Récepteurs à dépendance), est une protéine anti-apoptotique impliquée dans le développement, l'inflammation et la tumorigenèse. Les DRs induisent l'apoptose en absence de leurs ligands. A ce jour, il n'existe aucune donnée reliant le concept de DR et les virus oncogènes. Au cours de ma thèse, j'ai contribué à démontrer que la fonctionnalité des DRs était altérée au cours de l'infection par HCV in vitro et in vivo. Nous avons montré que la surexpression de la nétrine-1 augmente l'infectivité des virions et promeut leur entrée via l'activation et la diminution du recyclage de l'EGFR. De son coté, HCV augmente l'expression de la nétrine-1 suite à l'activation de l'épissage de son ARN pré-messager. Nous avons aussi montré que l'expression du récepteur à la nétrine-1, UNC5A, était diminuée au cours de l'infection suite à des diminutions transcriptionnelle et traductionnelle. Dans ce cadre, la nétrine-1 joue le rôle de facteur proviral en inhibant une potentielle voie de signalisation antivirale induite par le récepteur UNC5A non lié. Nous avons ensuite voulu savoir quelles conséquences cette surexpression de nétrine-1 pourrait avoir en physiopathologie hépatique en contexte non infectieux. Un stress du RE (Réticulum Endoplasmique) est observé au cours de l'infection par HCV. Le stress du RE entraîne l'activation de la réponse UPR qui induit l'apoptose médiée par la DAPK1 en cas de stress prolongé. Le fait que le récepteur UNC5B active aussi l'apoptose via l'activation de la DAPK1 nous a conduit à étudier l'implication de la nétrine-1 dans la survie cellulaire au cours de la réponse UPR en contexte hépatique. Nous avons démontré à la fois in vitro et in vivo que l'expression de la nétrine-1 pourrait protéger les cellules contre l'apoptose induite par la réponse UPR suite à sa liaison aux récepteurs UNC5A et C qui entraîne l'inhibition de la DAPK1. De nombreuses études ont également reporté des rôles de la nétrine-1 dans l'inflammation et la néoangiogenèse. Nous avons montré que la nétrine-1 inhibe la migration transendothéliale hépatique des PBMCs (Peripheral Blood Mononucleated Cells) et accélère la tubulogenèse des cellules endothéliales intrasinusoïdales hépatiques. Dans leur ensemble, mes travaux de thèse suggèrent que la nétrine-1 via ses récepteurs UNC5s joue des rôles délétères en pathophysiologie hépatique favorables à la persistance virale et à la résistance à la mort cellulaire / Current knowledge in hepatic pathology suggests that HCV is not directly oncogenic but puts patients at risk for liver cancer in a context associated with a chronic inflammation, UPR (Unfolded Protein Response) and liver regeneration. Netrin-1, the canonical ligand of the DR (Dependence Receptor) family, is an antiapoptotic secreted factor implicated in development, cancer and cancer-associated inflammatory diseases. DRs induce cell death when unbound. No data linking the DR system to oncogenic viruses are available to date. During the first part of my PhD, I contributed to demonstrate that HCV infection alters DR functionality both in vitro and in vivo. We found that Netrin-1 conditions HCV virion infectivity and promotes virion entry by increasing the activation and decreasing the recycling of the EGFR. In turn, HCV increases Netrin-1 expression through enhanced Netrin-1 pre-mRNA splicing. The Netrin-1 UNC5A receptor expression was decreased upon HCV infection through diminished transcription and translation. In this setting, Netrin-1 acts as a proviral factor by inhibiting a putative antiviral signaling pathway conveyed by the unbound UNC5A receptor. In this context, we wanted to determine what consequences such Netrin-1 up-regulation could induce in non-infectious hepatic pathophysiology. Chronic ER (endoplasmic reticulum) stress is observed during HCV infection. ER stress leads to UPR activation which triggers apoptosis via DAPK1 activation upon prolonged stress. The fact that the UNC5B receptor induces apoptosis through DAPK1 activation led us to investigate Netrin-1 implication in cell survival upon UPR in the liver. During the second part of my PhD, I have demonstrated both in vitro and in vivo in mice that Netrin-1 translation during UPR could protect cells against UPR-related cell death after binding to UNC5A and C, in a DAPK1-mediated fashion. Several studies have also identified Netrin-1 roles in inflammation and neo-angiogenesis. We found that Netrin-1 inhibits hepatic transendothelial migration of PBMCs (Peripheral Blood Mononucleated Cells) and accelerates tubulogenesis of liver sinusoidal endothelial cells. Netrin-1’s role in a hepatic inflammation and neoangiogenesis, both events being tightly associated with viral hepatitis, remains to be thoroughly elucidated. Altogether, our results suggest that Netrin-1 plays UNC5-dependent deleterious roles in hepatic pathophysiology, leading to viral persistence as well as resistance to cell death
|
30 |
Le glucagon-like peptide-I : un facteur de croissance et une hormone anti-apoptotique pour la cellule pancréatique[bêta] : étude de la transduction du signalButeau, Jean January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.087 seconds