Spelling suggestions: "subject:"epileptic encephalopathy"" "subject:"pileptic encephalopathy""
1 |
Altered gene expression profile in a mouse model of SCN8A encephalopathySprissler, Ryan S., Wagnon, Jacy L., Bunton-Stasyshyn, Rosie K., Meisler, Miriam H., Hammer, Michael F. 02 1900 (has links)
12 month embargo; Available online 9 November 2016 / SCN8A encephalopathy is a severe, early-onset epilepsy disorder resulting from de novo gain-of-function mutations in the voltage-gated sodium channel Na(v)1.6. To identify the effects of this disorder on mRNA expression, RNA-seq was performed on brain tissue from a knock-in mouse expressing the patient mutation p.Asn1768Asp (N1768D). RNA was isolated from forebrain, cerebellum, and brainstem both before and after seizure onset, and from age-matched wildtype littermates. Altered transcript profiles were observed only in forebrain and only after seizures. The abundance of 50 transcripts increased more than 3-fold and 15 transcripts decreased more than 3 fold after seizures. The elevated transcripts included two anti-convulsant neuropeptides and more than a dozen genes involved in reactive astrocytosis and response to neuronal damage. There was no change in the level of transcripts encoding other voltage-gated sodium, potassium or calcium channels. Reactive astrocytosis was observed in the hippocampus of mutant mice after seizures. There is considerable overlap between the genes affected in this genetic model of epilepsy and those altered by chemically induced seizures, traumatic brain injury, ischemia, and inflammation. The data support the view that gain-of-function mutations of SCN8A lead to pathogenic alterations in brain function contributing to encephalopathy.
|
2 |
Identification and Characterization of Pathogenic Mutations in Neurodevelopmental Disorders Discovered by Next-Generation SequencingRuzzo, Elizabeth Kathryn January 2014 (has links)
<p>Neurodevelopmental disorders develop over time and are characterized by a wide variety of mental, behavioral, and physical phenotypes. The categorization of neurodevelopmental disorders encompasses a broad range of conditions including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, cerebral palsy, schizophrenia, bipolar disorder, and epilepsy, among others. Diagnostic classifications of neurodevelopmental disorders are complicated by comorbidities among these neurodevelopmental disorders, unidentified causal genes, and growing evidence of shared genetic risk factors. </p><p>We sought to identify the genetic underpinnings of a variety of neurodevelopmental disorders, with a particular emphasis on the epilepsies, by employing next–generation sequencing to thoroughly interrogate genetic variation in the human genome/exome. First, we investigated four families presenting with a seemingly identical and previously undescribed neurodevelopmental disorder characterized by congenital microcephaly, intellectual disability, progressive cerebral atrophy, and intractable seizures. These families all exhibited an apparent autosomal recessive pattern of inheritance. Second, we investigated a heterogeneous cohort of ∼60 undiagnosed patients, the majority of whom suffered from severe neurodevelopmental disorders with a suspected genetic etiology. Third, we investigated 264 patients with epileptic encephalopathies — severe childhood epilepsy disorders — looking specifically at infantile spasms and Lennox–Gastaut syndrome. Finally, we investigated ∼40 large multiplex epilepsy families with complex phenotypic constellations and unclear modes of inheritance. The studied neurodevelopmental disorders exhibited a range of genetic complexity, from clear Mendelian disorders to common complex disorders, resulting in varying degrees of success in the identification of clearly causal genetic variants. </p><p>In the first project, we successfully identified the disease–causing gene. We show that recessive mutations in <italic>ASNS </italic> (encoding asparagine synthetase) are responsible for this previously undescribed neurodevelopmental disorder. We also characterized the causal mutations <italic>in vitro</italic> and studied Asns–deficient mice that mimicked aspects of the patient phenotype. This work describes ASNS deficiency as a novel neurodevelopmental disorder, identifies three distinct causal mutations in the ASNS gene, and indicates that asparagine synthesis is essential for the proper development and function of the brain.</p><p>In the second project, we exome sequenced 62 undiagnosed patients and their unaffected biological parents (trios). By analyzing all identified variants that were annotated as putatively functional and observed as a novel genotype in the probands (not observed in the unaffected parents or controls), we obtained a genetic diagnosis for 32% (20/62) of these patients. Additionally, we identify strong candidate variants in 31% (13/42) of the undiagnosed cases. We also present additional analysis methods for moving beyond traditional screens, e.g., considering only securely implicated genes, or subjecting qualifying variants from any gene to two unique analysis approaches. This work adds to the growing evidence for the utility of diagnostic exome sequencing, increases patient sizes for rare neurodevelopmental disorders (enabling more detailed analyses of the phenotypic spectrum), and proposes novel analysis approaches which will likely become beneficial as the number of sequenced undiagnosed patients grows. </p><p>In the third project, we again employ a trio–based exome sequencing design to investigate the role of <italic>de novo</italic> mutations in two classical forms of epileptic encephalopathy. We find a significant excess of <italic>de novo</italic> mutations in the ∼4,000 genes that are the most intolerant to functional genetic variation in the human population (P = 2.9 x 10<super>–3</super>, likelihood analysis). We provide clear statistical evidence for two novel genes associated with epileptic encephalopathy — <italic>GABRB3</italic> and <italic>ALG13</italic>. Together with the 15 well–established epileptic encephalopathy genes, we statistically confirm the association of an additional ten putative epileptic encephalopathy genes. We show that only ∼12% of epileptic encephalopathy patients in our cohort are explained by <italic>de novo</italic> mutations in one of these 24 genes, highlighting the extreme locus heterogeneity of the epileptic encephalopathies. </p><p>Finally, we investigated multiplex epilepsy families to uncover novel epilepsy susceptibility factors. Candidate variants emerging from sequencing within discovery families were further assessed by cosegregation testing, variant association testing in a case–control cohort, and gene–based resequencing in a cohort of additional multiplex epilepsy families. Despite employing multiple approaches, we did not identify any clear genetic associations with epilepsy. This work has, however, identified a set of candidates that may include real risk factors for epilepsy; the most promising of these is the <italic>MYCBP2</italic> gene. This work emphasizes the extremely high locus and allelic heterogeneity of the epilepsies and demonstrates that very large sample sizes are needed to uncover novel genetic risk factors. </p><p>Collectively, this body of work has securely implicated three novel neurodevelopmental disease genes that inform the underlying pathology of these disorders. Furthermore, in the final three studies, this work has highlighted additional candidate variants and genes that may ultimately be validated as disease–causing as sample sizes increase.</p> / Dissertation
|
3 |
Identifikace prediktorů kognitivní dysfunkce u dětí s farmakorezistentní epilepsií / Identification of the predictors of cognitive dysfunction in children with intractable epilepsyNovák, Vilém January 2020 (has links)
Epilepsy affects approximately 0,5-1% of children. Epileptic seizures originate in and propagate along certain neural pathways involved in physiological processes of cognition. Consequently, cognitive impairment frequently accompanies epilepsy in childhood and contributes to diminished quality of life of these patients.The main goal of this PhD thesis was to study multiple aspects of cognitive impairment in children suffering from intractable focal epilepsy. In the first and primary study, we described for the first time the negative impact of quasi- periodic epileptiform discharges in sleep (termed "hurdles" in our work) on cognitive functions in children with focal structural epilepsy. We have also shown that epileptiform activity in sleep has a more prominent negative impact on cognitive functions than epileptiform activity in wake. Although "hurdles" are by definition generalized, they do not predict worse outcomes of epilepsy surgery, compared to controls. In the second study, we analyzed the relationship between the extent of epileptogenic zone, functional brain plasticity (evaluated by fMRI) and cognitive dysfunction in children with drug resistant temporal epilepsy. Comparing patients with isolated focal cortical dysplasia (FCD) and patients with combined pathology (FCD and hippocampal...
|
4 |
Genetic aetiologies and phenotypic variations of childhood-onset epileptic encephalopathies and movement disordersKomulainen-Ebrahim, J. (Jonna) 30 April 2019 (has links)
Abstract
Novel genetic aetiologies for epileptic encephalopathies and movement disorders have been discovered by using next-generation sequencing methods. The phenotypic and genotypic variability in these conditions is very wide.
The aim of this study was to discover novel genetic causes and phenotypes of childhood-onset drug-resistant epilepsy and epileptic or developmental encephalopathies that occur separately or together with movement disorders, and familial movement disorders. Furthermore, the use of whole-exome sequencing (WES) as a diagnostic tool in clinical practice was evaluated. Altogether, 12 children with undefined aetiology, who fulfilled the inclusion criteria, were included in the study.
GABRG2 gene was identified as a genetic cause of epileptic encephalopathies. Novel GABRG2-associated phenotypes included progressive neurodegeneration, epilepsy in infancy with migrating focal seizures, and autism spectrum disorder. New pathogenic variants, GABRG2 p.P282T and p.S306F, were discovered.
The pathogenic NACC1 variant caused focal epilepsy, developmental disability, bilateral cataracts, and dysautonomia. The novel phenotype associated with the NACC1 p.R298W variant included hyperkinetic movement disorder.
SAMD9L was found to be the genetic cause for the familial movement disorder. The phenotype associated with the novel SAMD9L p.I891T variant was very variable. Neuroradiological findings included cerebellar atrophy and periventricular white matter changes. After publication of these results, SAMD9L was reported to be one of the most common genetic aetiologies of childhood bone marrow failure and myelodysplastic syndrome.
The pathogenic homozygous MTR variant was found to cause early-onset epileptic encephalopathy that occurred together with movement disorder and haematological disturbances. Drug resistant seizures responded to cofactor and vitamin treatments.
Whole-exome sequencing for 10 patients with drug-resistant epilepsy or epileptic or developmental encephalopathy provided a genetic diagnosis for two patients (20%).
This study confirmed that, for epileptic encephalopathies and movement disorders in which the genetic causes and phenotypes are heterogeneous and sometimes treatable, WES is a useful tool for diagnostics and in the search for novel aetiologies, which might turn out to be more common than expected. / Tiivistelmä
Uusien sekvensointimenetelmien käyttöönotto on mahdollistanut epileptisten enkefalopatioiden ja liikehäiriöiden uusien geneettisten syiden löytymisen. Näissä sairausryhmissä geenien ja ilmiasujen vaihtelevuus on suurta.
Tutkimuksen tarkoituksena oli löytää uusia geneettisiä syitä ja ilmiasuja lapsuusiällä alkavissa vaikeahoitoisissa epilepsioissa ja epileptisissä tai kehityksellisissä joko itsenäisesti tai yhdessä liikehäiriön kanssa esiintyvissä enkefalopatioissa sekä perheittäin esiintyvissä liikehäiriöissä. Lisäksi selvitettiin eksomisekvensoinnin käyttökelpoisuutta kliinisessä diagnostiikassa näiden potilasryhmien kohdalla. Tutkimukseen osallistui yhteensä 12 sisäänottokriteerit täyttävää lasta, joiden sairauden syy oli jäänyt tuntemattomaksi.
GABRG2-geenin mutaatiot aiheuttivat epileptisiä enkefalopatioita, joiden uutena ilmiasuna oli etenevä taudinkuva, johon liittyivät aivojen rappeutuminen, migroiva imeväisiän paikallisalkuinen epilepsia sekä autismikirjon häiriö. Tutkimuksessa löydettiin uusia GABRG2-mutaatioita: p.P282T ja p.S306F.
NACC1-geenin mutaatio aiheutti epilepsian, kehitysvammaisuuden, molemminpuolisen kaihin ja autonomisen hermoston toiminnan häiriön. Hyperkineettinen liikehäiriö oli uusi NACC1 p.R298W -mutaatioon liittyvä ilmiasu.
SAMD9L-geenin mutaatio aiheutti perheessä esiintyvän liikehäiriön. Neurologinen ja hematologinen ilmiasu olivat hyvin vaihtelevia. Aivojen kuvantamislöydöksiin sisältyi pikkuaivojen rappeutumista ja valkoisen aivoaineen muutoksia aivokammioiden ympärillä. Näiden tutkimustulosten julkaisemisen jälkeen SAMD9L-geenin mutaatioiden on todettu olevan yksi yleisimmistä perinnöllisistä luuytimen vajaatoiminnan ja myelodysplasian syistä.
Homotsygoottinen MTR-geenin mutaatio aiheutti varhain alkaneen epileptisen enkefalopatian, liikehäiriön ja hematologisen häiriön. Kofaktori- ja vitamiini hoidot vähensivät epileptisiä kohtauksia, joihin tavanomainen lääkitys ei tehonnut.
Geneettiset syyt ja ilmiasut ovat epileptisissä enkefalopatioissa ja liikehäiriöissä hyvin vaihtelevia, ja osaan on olemassa spesifi hoito. Eksomisekvensointi on käyttökelpoinen diagnostiikan ja uusien geneettisten syiden etsimisen apuna. Tässä tutkimuksessa eksomisekvensoinnin avulla kymmenestä potilaasta kahdelle (20%) saatiin varmistettua geneettinen diagnoosi.
|
5 |
FASN mutations in epileptic encephalopathiesTene Tadoum, Samuel Boris 05 1900 (has links)
L’acide gras synthase, codé par le gène FASN, est une protéine multi-enzyme homodimérique responsable de la lipogenèse de novo à partir de l’acétyl-CoA et du malonyl- CoA. La finalité de cette lipogenèse est la production de l’acide palmitique, un acide gras simple, précurseur des acides gras à très longues chaînes. L’acide palmitique est impliqué dans plusieurs processus biologiques, dont la palmitoylation qui permet d’ancrer diverses protéines à la membrane cellulaire sous-tendant, entre autres, la transmission synaptique. Le rôle de l’acide gras synthase dans le développement embryonnaire est bien établi. En effet, il est exprimé de manière ubiquitaire dans l’embryon, principalement dans les tissus en pleine croissance et soumis à un remodelage, participant ainsi activement au développement cérébral. Par conséquent, des mutations du gène FASN ont été associées à plusieurs maladies, incluant divers types de cancers, les maladies cardiovasculaires, mais également, plus récemment, à certaines maladies du neurodéveloppement, incluant les troubles du spectre de l’autisme. Des données récentes des laboratoires Rossignol et Campeau, au CHU Ste-Justine, suggèrent un lien entre des mutations récessives ou de novo du gène FASN et des formes précoces d’épilepsie avec atteinte cognitive (encéphalopathies épileptogènes).
Nous postulons que les mutations du gène FASN modifient la synthèse de l’acide palmitique et perturbent le développement des réseaux neuronaux, en altérant la migration, le développement morphologique, l’excitabilité et/ou la fonction synaptique de populations neuronales spécifiques, résultant en une hyperexcitabilité neuronale et à l’épilepsie. Pour explorer cette hypothèse, nous avons recueilli les informations cliniques de dix patients porteurs de mutations du gène FASN dans le cadre d’études génomiques en cours au CHU Ste- Justine et à travers le monde. Nous avons également généré un nouveau modèle murin de la maladie, exprimant une mutation retrouvée chez un membre de notre cohorte clinique, que nous avons caractérisé sur les plans histochimique et électrophysiologique.
Nos données suggèrent que les mutations du gène FASN induisent chez l’humain un phénotype clinique de retard global du développement évoluant vers une déficience intellectuelle, s’accompagnant d’un éventail de signes neurologiques (déficit moteur, spasticité, réflexes ostéotendineux vifs, hypotonie et ataxie) et d’un risque accru d’épilepsie. De plus, notre modèle de souris knock-in Fasn.S154N révèle la fonction critique de ce gène dans le développement embryonnaire puisqu’une mutation homozygote entraîne une mortalité in utero. Par ailleurs, les souris porteuses de mutations hétérozygotes survivent et présentent un phénotype clinique rappelant celui observé chez les patients, incluant un comportement
anxieux, une activité épileptique interictale à l’électroencéphalogramme ainsi qu’un abaissement du seuil convulsif lors d’une exposition au pentylenetetrazole (PTZ).
Nous discutons certains mécanismes sous-jacents contribuant potentiellement au développement de l’épilepsie dans cette maladie, incluant une altération de l’activité de l’acide gras synthase au niveau du cortex préfrontal et de l’amygdale, une palmitoylation aberrante des protéines synaptiques, une plus grande vulnérabilité des cellules granulaires du gyrus denté, un dysfonctionnement des cellules souches neurales, une neurogénèse insuffisante, ainsi qu’une altération de la myélinisation et de la croissance axonale impactant la migration des interneurones. Ces mécanismes sont prédits pour altérer l’excitabilité neuronale et la transmission synaptique, perturbant la fonction des circuits. Des études subséquentes permettront d’élucider lesquels de ces divers mécanismes contribuent au phénotype clinique dans notre nouveau modèle murin de la maladie. / Fatty Acid Synthase is a large protein complex encoded by the FASN gene, which is responsible for de novo lipogenesis from acetyl-CoA and malonyl-CoA in the presence of NADPH. The endpoint of this process is the production of palmitic acid. The roles of fatty acid synthase in embryonic development are well established: it is ubiquitously expressed in early embryos, particularly in tissues undergoing active proliferation, outgrowth, and remodelling, and it is thus essential for normal brain development and neuronal function. Consequently, FASN gene mutations have been associated with several neurodevelopmental conditions, including autism spectrum disorders (ASD). Recently, the laboratories of Drs. E. Rossignol and P. Campeau at the CHU Ste-Justine (Université de Montréal), with their international collaborators, have identified 10 patients with neurodevelopmental disorders (i.e., developmental delay, intellectual disability and/or epilepsy) carrying recessive or de novo mutations in the FASN gene, supporting a critical role of FASN in regulating neuronal circuit development and function. However, the mechanisms by which mutations in the FASN gene result in epilepsy are unknown.
We postulate that FASN mutations alter palmitic acid synthesis and disrupt neuronal network development, resulting in network hyperexcitability and epilepsy. In this study, we expand the phenotypic description of patients carrying FASN mutations, while generating a novel mouse model carrying a patient-derived FASN mutation to explore the underlying cellular and network mechanisms.
Our data reveal that FASN mutations, in humans, generate neurodevelopmental disorders characterized by epilepsy, global developmental delay (GDD), intellectual disability (ID), and a broad range of neurological signs (motor deficit, spasticity, hyperreflexia, hypotony, and ataxia). In our knock-in FasnS154N mouse model, homozygous mutations resulted in prenatal lethality. In contrast, heterozygous mutations caused a clinical phenotype reminiscent of the patient phenotype, with anxiety-like behaviors, spontaneous interictal spikes on electroencephalograms (EEG), and a tendency to a reduced PTZ-induced seizure threshold.
We discuss the potential underlying mechanisms, including an altered FAS activity within the prefrontal cortex and the amygdala, aberrant palmitoylation of postsynaptic density proteins, the vulnerability of dentate gyrus granules cell, altered neural stem cells activity and neurogenesis, improper axonal growth and myelination, resulting in altered neuronal excitability and synaptic function, aberrant network activities and epilepsy. These mechanisms will be explored in subsequent studies using our novel animal model.
|
6 |
Perturbation de la migration des interneurones GABAergiques corticaux dans un modèle murin d'encéphalopathie épileptogène associée au gène PIGB et aux ancres glycoprotéiquesToudji, Ikram 08 1900 (has links)
Des variants récessifs touchant le gène PIGB, encodant une enzyme impliquée dans la biosynthèse des ancres GPI, ont récemment été décrits chez des patients présentant une déficience héritée des ancres GPI ainsi qu’une encéphalopathie épileptogène (EE), une forme d’épilepsie infantile sévère associée à des atteintes cognitives. Chez l’humain, plus de 150 protéines, dont certaines sont critiques pour la fonction neuronale, sont localisées à la membrane cellulaire grâce aux ancres GPI. Des données préliminaires du laboratoire Rossignol démontrent que la délétion embryonnaire du gène Pigb dans les interneurones GABAergiques (IN) dérivés de l’éminence ganglionnaire médiale (MGE) est suffisante pour induire des crises d’épilepsie spontanées et des déficits cognitifs chez la souris, suggérant un rôle critique de PIGB dans le développement de l’inhibition corticale. Toutefois, les mécanismes cellulaires et moléculaires sous-tendant les phénotypes cliniques associés aux délétions du gène PIGB sont inconnus. Compte tenu du rôle central joué par les molécules de guidage, dont certaines sont des protéines à ancrage GPI, lors de la migration des IN vers la plaque corticale, nous postulons que la perte sélective des ancres GPI, résultant d’une délétion conditionnelle de Pigb dans les IN, altère leur dynamique de migration, ce qui a pour conséquence de réduire leur nombre dans le cortex postnatal, menant à une désinhibition corticale et au développement de l’épilepsie.
L’imagerie en temps réel d’explants cellulaires de MGE a révélé que la perte de fonction du gène Pigb dans les IN dérivés du MGE entraine un défaut de la migration tangentielle et des anomalies morphologiques se traduisant par une réduction de la densité des IN dans le cortex postnatal. Nous avons également démontré que la signalisation motogène EphA4-éphrineA2 est altérée dans les IN déficients en ancres GPI, contribuant au délai de migration observé.
En somme, nos travaux ont permis de préciser les mécanismes physiopathologiques sous-tendant les EE associées à des variants pathogéniques du gène PIGB et d’approfondir notre compréhension du rôle des ancres GPI durant le neurodéveloppement et plus précisément, durant la migration des IN. / Recessive variants in the PIGB gene, encoding an enzyme involved in the biosynthesis pathway of GPI anchors, were recently described in children with an inherited GPI anchor defect and epileptic encephalopathy (EE), a neurodevelopmental disorder characterized by early-onset epilepsy with cognitive impairment. GPI anchors are critical for the membrane attachment of at least 150 human proteins, some of which are important for proper neuronal function. Preliminary data from the Rossignol group show that the embryonic deletion of Pigb in GABAergic interneurons (INs) emanating from the medial ganglionic eminence (MGE) causes spontaneous seizures and cognitive deficits in mice, suggesting a critical role of PIGB in the establishment of cortical inhibition. However, the cellular and molecular mechanisms leading to epilepsy remain unknown. Given the central role of guidance molecules, some of which are GPI-anchored proteins, during neuronal migration, we postulate that loss of GPI anchors following the conditional deletion of Pigb in MGE-derived INs disrupts chemotactic guidance and IN migration dynamics, leading to cortical disinhibition and epilepsy post-natally.
Time-lapse live imaging of MGE explants revealed that the targeted deletion of Pigb impairs the tangential migration as well as the morphological development of MGE-derived INs, resulting in reduced IN densities in the postnatal cortex. We showed that the kinetic deficits are partly due to a loss of EphA4-ephrinA2 motogenic signaling in PigbcKO INs.
In summary, our work helps clarify the physiopathology underlying PIGB associated-EE and deepens our understanding of the roles of GPI-anchor-related pathways in neurodevelopment and more specifically, in the migration of cortical INs.
|
7 |
Refining Genotypes and Phenotypes in KCNA2-Related Neurological DisordersDöring, Jan H., Schröter, Julian, Jüngling, Jerome, Biskup, Saskia, Klotz, Kerstin A., Bast, Thomas, Dietel, Tobias, Korenke, G. Christoph, Christoph, Sophie, Brennenstuhl, Heiko, Rubboli, Guido, Moller, Rikke S., Lesca, Gaetan, Chaix, Yves, Kölker, Stefan, Hoffmann, Georg F., Lemke, Johannes R., Syrbe, Steffen 06 February 2024 (has links)
Pathogenic variants in KCNA2, encoding for the voltage-gated potassium channel Kv1.2,
have been identified as the cause for an evolving spectrum of neurological disorders. Affected
individuals show early-onset developmental and epileptic encephalopathy, intellectual disability, and
movement disorders resulting from cerebellar dysfunction. In addition, individuals with a milder
course of epilepsy, complicated hereditary spastic paraplegia, and episodic ataxia have been reported.
By analyzing phenotypic, functional, and genetic data from published reports and novel cases,
we refine and further delineate phenotypic as well as functional subgroups of KCNA2-associated
disorders. Carriers of variants, leading to complex and mixed channel dysfunction that are associated
with a gain- and loss-of-potassium conductance, more often show early developmental abnormalities
and an earlier onset of epilepsy compared to individuals with variants resulting in loss- or gain-of-
function. We describe seven additional individuals harboring three known and the novel KCNA2
variants p.(Pro407Ala) and p.(Tyr417Cys). The location of variants reported here highlights the
importance of the proline(405)–valine(406)–proline(407) (PVP) motif in transmembrane domain S6 as
a mutational hotspot. A novel case of self-limited infantile seizures suggests a continuous clinical
spectrum of KCNA2-related disorders. Our study provides further insights into the clinical spectrum,
genotype–phenotype correlation, variability, and predicted functional impact of KCNA2 variants.
|
8 |
Apport de l'analyse chromosomique sur différents microréseaux d'ADN dans l'identification de nouvelles mutations et la caractérisation de gènes candidats impliqués dans la déficience intellectuelle / Contribution of chromosome analysis on different DNA Micro-Arrays in the identification of novel mutations and characterization of candidate genes involved in intellectual disabilityHuynh, Minh Tuan 15 November 2013 (has links)
Anomalies de structure du génome et Déficience Intellectuelle : Recherche des gènes candidats de Déficience intellectuelle en utilisant l'analyse chromosomique sur microréseau d'ADN pangénomique 180K et l'analyse chromosomique sur microréseau d'ADN de haute résolution 1M ciblée des gènes candidats de Déficience intellectuelle. L'analyse chromosomique sur microréseau d'ADN (ACM) de haute résolution est une innovation technologique puissante afin de détecter les aberrations chromosomiques concernant les variations du nombre de copies. En utilisant l'ACM 180K, l'ACM 1M et la PCR quantitative, nous avons identifié les 5 variations du nombre de copies (CNV) intragéniques pathogènes de novo impliquant les gènes : RUNX1T1, KIAA1468, FABP7, ZEB2 (syndrome de Mowat-Wilson) et ANKRD11 (syndrome de KBG). Les 5 patients ayant une DI et une dysmorphie faciale. L'ACM 180K a révélé une délétion d'une taille de 92 kb emportant le gène KIAA1468 candidat pour le syndrome de West chez un enfant de 3 ans présentant une DI sévère et une encéphalopathie épileptique infantile précoce. Le criblage des mutations du gène KIAA1468 a été réalisé chez 35 patients atteints de syndrome de West. Un variant intronique c.2761-7 T>C et un variant faux-sens hérité de la mère c.3547 G>A avec signification clinque inconnue ont été identifiés. En utilisant des approches par l'ACM 1M de haute résolution chez 45 patients atteints de DI idiopathique modérée à sévère, un seul CNV causal a été identifié, une délétion intragénique d'une taille de 28.37 kb du gène ZEB2. Notre étude confirme une fréquence très faible des délétions/duplications intragéniques avec la détection d'une seule aberration chromosomique (1/45). En conclusion, si la fréquence des mutations ponctuelles est élevée, nous avons également souligné l'application de la technique de séquençage à haut débit avec un rendement diagnostique jusqu'à 45%-55% des cas de DI sévère idiopathique chez lesquels aucun CNV n'a été détecté sur ACM / Chromosomal structural abnormalities and Intellectual Disability : In search of intellectual disability candidate genes by using pangenomic comparative genomic hybridization 180 K and high resolution comparative genomic hybridization 1M targeting intellectual disability candidate gene.High resolution microarray-based comparative genomic hybridization (a-CGH) has been a powerful technical innovation in order to detect submicroscopic chromosomal aberrations related to copy number variations. By using a-CGH 180K, 1M high resolution a-CGH and quantitative PCR, we have identified 5 pathogenic intragenic copy number variations (CNVs) de novo : RUNX1T1, KIAA1468, FABP7, ZEB2 (Mowat-Wilson syndrome) and ANKRD11 (KBG syndrome). All five patients had intellectual disability (ID) and facial dysmorphism. Interestingly, a-CGH 180K has revealed a 92 kb deletion of a candidate gene KIAA1468 for West syndrome in a 3 year-old boy with severe ID and early infantile epileptic encephalopathy. Mutational screening for candidate gene KIAA1468 was performed in 35 patients with West syndrome. An intronic variant c.2761-7 T>C and a non synonymous maternally inherited variant c.3547 G>A with unknown clinical significance were identified. By using 1M high-resolution a-CGH approach in 45 patients presenting moderate to severe idiopathic ID, only one causal CNV was identified, a 28.37 kb intragenic ZEB2 deletion. Our study has confirmed the low frequency of intragenic deletion/duplication with the detection of only one chromosomal aberration (1/45). In conclusion, providing that the high frequency of intragenic point mutation, we also stressed the application of next-generation sequencing technology with 45-55% diagnostic yield in patients with idiopathic severe ID in case of no apparent CNV(s) on high-resolution a-CGH
|
9 |
Criblage génétique et caractérisation fonctionnelle des mutations dans le gène CHD2 associé à l’épilepsie dans un modèle de poisson zèbreCloutier, Véronique 04 1900 (has links)
No description available.
|
10 |
Contribution à l'étude des encéphalopathies épileptiques précoces : recherche de nouvelles causes génétiques & caractérisation fonctionnelle des mutations du gène KCNQ2 / Contribution to the study of early onset epileptic encephalopathies : research of new genetic causes and functional study of mutations in the KCNQ2 geneAbidi, Affef 25 March 2016 (has links)
Les Encéphalopathies Épileptiques Précoces sont des pathologies rares et sévères caractérisées par des crises fréquentes commençant dans les trois premiers mois de vie accompagnées d’un EEG intercritique altéré et un pronostic très défavorable. Au cours de la caractérisation génétique d’une cohorte de 402 patients, nous avons mis en évidence une délétion de 19,9 kb localisée en Xp11.23 chez un garçon et 34 mutations de novo du gène KCNQ2. La première partie de mon projet a consisté en l’étude de la pathogénicité de la délétion Xp11.23, qui implique trois gènes dont WDR45. Les mutations de WRD45 ont été décrites dans une dégénérescence neuronale avec accumulation de fer et presque exclusivement chez des patients de sexe féminin. Le diagnostic initial, chez ce patient, montre une IRM normale avec un phénotype d'EEP et l'accumulation de fer a été détectée à partir de 5 ans. Ce travail m’a permis de décrire le premier patient atteint d’EEP porteur d’une délétion de WDR45. La deuxième partie de mon projet a concerné le gène KCNQ2. Nos résultats ont montré que les mutations sont impliquées dans deux mécanismes physiopathologiques, une délocalisation subcellulaire et un gain de fonction. Ces résultats ouvrent de nouvelles perspectives en terme de compréhension de la pathologie et de thérapies qui peuvent être proposées. Une dernière partie de ce projet a consisté en l’élaboration de nouveaux modèles in vitro, j’ai mis au point des lignées stables exprimant KCNQ2 qui permettront le criblage de molécules thérapeutiques à haut-débit, ainsi que des progéniteurs neuronaux différenciés à partir de cellules iPS issues de la reprogrammation de fibroblastes de patients. / Early onset epileptic encephalopathies are rare and severe disorders, characterized by frequent motor seizures occurring before three months of age associated with an altered interictal EEG pattern. The prognosis is poor. During the course of the genetic characterization of a cohort of 402 EOEE patients, we identified a de novo deletion located at Xp11.23 in a male patient and 34 KCNQ2 de novo mutations. The first part of my project consisted in the study of the pathogenicity of the Xp11.23 deletion that encompasses three genes including WDR45. Mutations in the WDR45 gene been have recently identified in patients suffering from neurodegeneration with brain iron accumulation. WDR45 mutations have been almost exclusively found in females. Our patient with the Xp11.23 deletion presented a normal MRI and the EOEE phenotype was predominant. Iron accumulation began only at 5 years. My work reveals that deletions of WDR45 are viable in males and can be diagnosed as EOEE. The second part of my project was aimed at the functional study of two KCNQ2 gene mutations. During this work, my results showed that those mutations were involved in new pathological mechanisms, namely a mislocalization or gain of function. Those results provide new perspectives in term of disease knowledge and therapy. The last part of my project consisted in the development of two new in vitro models for the study of KCNQ2 mutations: stable cell lines expressing the Kv7.2 channel for high-throughput screening of drugs and the production of neurons from induced pluripotent stem cells arising from reprogrammed patient fibroblasts.
|
Page generated in 0.0576 seconds