• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 643
  • 132
  • 117
  • 46
  • 21
  • 16
  • 16
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • Tagged with
  • 1175
  • 668
  • 354
  • 222
  • 198
  • 191
  • 162
  • 95
  • 76
  • 73
  • 71
  • 71
  • 69
  • 67
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Regulation of neutral proteinase and plasminogen activator secretion by epithelial cells in vitro

Hong, Hee Ling January 1985 (has links)
The aim of this thesis was to study the regulation of proteinase secretion by epithelial cells (E-cells) derived from the epithelial cell rests of Malassez. Since these epithelial cell rests are present only in small numbers in-vivo, E-cells derived from porcine cell rests were cultured according to Brunette et al. (1976) and conditions chosen so that detectable amounts of the proteinases, neutral proteinase and plasminogen activator, could be obtained. The regulation of the secretion of these enzymes was investigated by varying the cell population density, adding E.Coli lipopolysaccharide to the cultures and altering the shape of the E-cells by both chemical and physical means. Cell population density modulated both neutral proteinase and plasminogen activator secretion. Neutral proteinase secretion was highest at low cell population densities and the activity decreased with increasing cell population density. Plasminogen activator secretion followed a similar pattern. Escherichia coli lipopolysaccharide (E.coli LPS) stimulated both neutral proteinase and plasminogen activator secretion. LPS extracted by the phenol method and LPS extracted by the trichloroacetic acid method caused similar increases in neutral proteinase activity but the increase in plasminogen activator activity was greater when the trichloroacetic acid extracted LPS was used. These findings support the proposal that bacterial LPS in contact with periapical tissues could stimulate the epithelial cell rests into increased production of proteinases, thereby contributing to the degradation of connective tissue associated with dental cyst formation. E-cell shape was altered by physical and chemical means. Addition of cholera toxin and dibutyryl cAMP caused E-cells to flatten. Phorbol myristate acetate, however, caused the cells to retract slightly. Mechanical stretching was applied to the cells to cause cell flattening, and cell rounding was effected by mechanical relaxation. Another method made use of E-cells grown on a substrate with V-shaped grooves which caused the cells to adopt a rounder shape more frequently than cells grown on a flat substrate. In addition, dishes coated with increasing concentrations of poly(HEMA) solution, which altered dish adhesivity to the cell, caused the cells to become less well-spread. In all experiments, a more flattened cell shape correlated with a reduced level of neutral proteinase and plasminogen activator secretion while a more rounded shape correlated with increased amounts of neutral proteinase and plasminogen activator secretion. / Dentistry, Faculty of / Graduate
162

Corneal epithelial debridement for the treatment of painful bullous keratopathy: A pilot study

McClunan, Daemon 25 February 2019 (has links)
Purpose: The aim of the study was to evaluate the outcomes of corneal manual epithelial debridement (MED) for the treatment of painful bullous keratopathy (BK). Methods: In a prospective interventional case series, 15 eyes of 15 consecutive patients presenting with painful BK of varying aetiology underwent MED. Patients were followed up at 10 days, 1 month, 2 months, 3 months and 6 months post procedure. Outcome parameters evaluated include numeric rating pain score (NRS), visual acuity (VA), corneal transparency and size of corneal bullae. Results: The mean NRS was significantly decreased from its baseline value of 7.2 +- 1.7 at all follow-up visits (p < 0.02). Mean VA and corneal transparency remained stable for the duration of the study. In most patients the average size of corneal bullae was initially reduced, but returned to baseline by the end of the study. Conclusion: MED reduces mean pain scores and temporarily reduces the size of corneal bullae in BK. MED may be considered as a simple, low cost alternative for reducing pain in patients awaiting corneal transplant. Further studies are required to evaluate MED for the treatment of BK and compare outcomes against other palliative treatment options.
163

Stress Response And Pathogenesis of <i>Salmonella enterica</i> serovar Typhimurium

Shah, Jigna D 01 May 2011 (has links)
Salmonella is a food-borne pathogen that leads to substantial illness worldwide. The clinical syndromes associated with Salmonella infection are enteric (typhoid) fever and gastroenteritis, in healthy humans. Typhoid fever is caused by host-adapted S. Typhi and S. Paratyphi. Gastroenteritis is caused by serovars usually referred to as non typhoidal Salmonellae (NTS). In recent years, an increasing number of outbreaks due to NTS, despite increased efforts in food safety, were reported because of persistence of Salmonella in the food chain. Thus I hypothesized that Salmonella is able to withstand stresses in the environment and treatments used during food processing for its elimination and thereby able to develop resistance against subsequent stress encounters. The effect of cold, peroxide, and acid was tested on survival of S. Typhimurium and the survival was persistent under cold stress (5°C) for up to 240 h. Pre-adaptation to cold stress (5°C, 5 h) also increased survival of S. Typhimurium during subsequent exposure to acid stress (pH 4.0, 90 min) by repressing hydroxyl radical formation. Cold stress (5°C, 48 h) to S. Typhimurium significantly (p < 0.05) increased its adhesion and invasion in intestinal iv epithelial cells. This phenotype was attributed to a pair of protein-protein interactorsacting as receptors on microbial (STM2699) and host cell surface (SPTAN1). Cold stress significantly (q < 0.05) induced STM2699 in S. Typhimurium and SPTAN1 was significantly (q < 0.05) induced in pithelial cells upon infection with cold-stressed S. Typhimurium. Cold stress to S. Typhimurium also significantly (q < 0.05) induced genes related to virulence such as type 3 secretion system apparatus and effectors genes, prophage genes, and plasmid genes and they remain induced upon infection of epithelial cells with additional induction of spv genes on the plasmid. Infection of epithelial cells with cold-stressed S. Typhimurium significantly (p < 0.05) increased activation of caspase 9 and 3/7. Cold-stressed S. Typhimurium switched metabolism from aerobic respiration to fermentation and it persisted during infection of epithelial cells. As a result, short chain fatty acids formate and acetate, which act as diffusible signal for invasion, were detected in significantly (q < 0.05) high amounts in extracellular media of cells infected with cold-stressed S. Typhimurium supporting the phenotype of high adhesion and invasion of cold-stressed S. Typhimurium in epithelial cells.
164

Sensory receptor neuron turnover in the olfactory epithelium of the snail, Achatina fulica : an autoradiographical study

Rieling, Janine Ann. January 1985 (has links)
No description available.
165

Establishment of bovine mammary epithelial cell lines : an in vitro model for lactation

Huynh, The Hung January 1990 (has links)
No description available.
166

Growth of a Bovine Mammary Epithelial Cell Line (Mac-T) on Cytodex 3 Microcarriers

Roper, Andrea M. January 1993 (has links)
No description available.
167

Die Bedeutung des neurotrophen Faktors Glial cell line-derived neurotrophic factor (GDNF) für die Integrität der intestinalen Epithelbarriere / The importance of Glial cell line-derived neurotrophic factor (GDNF) for the integrity of the intestinal epithelial barrier

Bergauer, Lisa January 2017 (has links) (PDF)
In der vorliegenden Arbeit wurden die Effekte des neurotrophen Faktors GDNF auf die Struktur und Funktion der intestinalen Epithelbarriere untersucht. Zellkulturen mit Caco2 beziehungsweise HT29B6 dienten als Modellsysteme für die Epithelschicht der Darmschleimhaut. Transwellsassays und TER-Messungen mittels ECIS-Gerät fungierten als zentrale Untersuchungsmethoden zur Evaluation der funktionellen Barriereeigenschaft der Zellmonolayer. Die morphologischen und quantitativen Veränderungen von Zelljunktionsproteinen wurden mittels indirekter Immunfluoreszenzfärbungen beziehungsweise Western Blot-Untersuchungen dargestellt. Um Migration- und Proliferationsverhalten nach Verletzung des Zellmonolayers zu untersuchen, führten wir in vitro-Scratch-Assays durch. Zunächst wurde bestätigt, dass intestinale Epithelzellen die GDNF-Rezeptoren GFRα1, GFRα2 und RET exprimieren. Es zeigte sich sowohl in Immunfärbungen gegen Junktionsproteine als auch in Permeabilitätsmessungen, dass GDNF zu einer verstärkten Differenzierung der intestinalen Epithelbarriere führt. In Inhibitions- und Aktivierungsexperimenten mit verschiedenen Mediatoren wurde als zugrunde liegender Mechanismus die Inaktiverung der p38 MAPK durch GDNF identifiziert. Weiterhin zeigten Versuche mit epithelialen Wundheilungsassays, dass GDNF, über eine cAMP/PKA-abhängige Induktion der Proliferation, zu einer Verbesserung der Wundheilung führt. In Immunfärbungen und Western Blot-Analysen wurde beobachtet, dass auch intestinale Epithelzelllinien in der Lage sind GDNF zu synthetisieren. Zusammenfassend konnte in der vorliegenden Arbeit erstmals gezeigt werden, dass der neurotrophe Faktor GDNF direkt auf die Differenzierung und Proliferation von kultivierten Enterozyten Einfluss nehmen kann. Die Tatsache, dass intestinale Epithelzellen selbst GDNF synthetisieren und sezernieren können, weist auf einen neuen autokrinen- oder parakrinen Wirkmechanismus des neurotrophen Faktors hin. / Recent data suggest that neurotrophic factors that derive from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). Here, we further investigated the potential role and mechanisms of GDNF in the regulation of intestinal epithelial barrier functions. In Western blot analyses of serum-starved intestinal epithelial cell lines Caco2 and HT29B6 significant amounts of GDNF were detected suggesting that enterocytes may represent an additional source of GDNF secretion. Application of recombinant GDNF on Caco2 monolayers for 24h resulted in significant epithelial barrier stabilisation in Caco2 and HT29B6 monolayers with immature barrier functions. Wound healing assays in cell monolayers showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38MAPK in immature epithelial cells. While inactivation of p38MAPK signalling by SB202190 mimicked GDNF-induced barrier maturation, coincubation of GDNF with p38MAPK activator anisomycin blocked GDNF effects. Increasing cAMP levels by forskolin and rolipram had adverse effects on barrier maturation as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells and GDNF-induced proliferation of epithelial cells was abrogated by PKA-inhibitor H89. In summary, our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38MAPK signalling.
168

Salmonella typhimurium interaction with intestinal epithelial cells: Identification of a novel invasion locus

Altier, Craig January 1996 (has links)
No description available.
169

A study of the chemopreventive effects of black raspberry components in rat esophageal epithelial cells

Zikri, Nancy N. 07 January 2008 (has links)
No description available.
170

THE ROLE OF FEMALE SEX HORMONES AND LACTOBACILLI ON GENITAL EPITHELIAL CELL BARRIER FUNCTIONS AND INNATE IMMUNE RESPONSES IN THE PRESENCE AND ABSENCE OF HIV

Dizzell, Sara January 2017 (has links)
Background: Approximately 40% of global human immunodeficiency virus-1 (HIV) transmission occurs in the female genital tract (FGT). Epithelial cells lining the FGT comprise the first barrier to HIV-1 entry. The functions of these cells are influenced by female sex hormones and the mucosal microbiota. Studies have suggested that hormonal environment and a dysbiosis of the FGT microbiota may lead to inflammation in the genital mucosa and enhance HIV acquisition. A Lactobacillus dominant microenvironment in the FGT is considered to have protective functions against sexually transmitted pathogens, however the interaction between sex hormones and lactobacilli and their effect on epithelial cell functions remains to be determined. Methods of Study: For these studies, primary genital epithelial cells (GECs) were isolated from hysterectomy tissues obtained following patient consent. GEC cultures were grown to confluence on cell culture inserts in the presence or absence of the female sex hormones estrogen (E2), progesterone (P4), or medroxyprogesterone acetate (MPA). Polarized monolayers were exposed to two probiotic strains of Lactobacillus: L. reuteri (RC-14) or L. rhamnosus (GR-1), or the most common strain of bacteria found in the FGT, L. crispatus in the presence or absence of HIV-1. Cell viability, barrier integrity, and innate inflammatory factors were among the primary measures performed. Results: In our system, cell viability was unaltered in the presence of Lactobacillus species and/or female sex hormones. All three strains of bacteria (L. crispatus and probiotic lactobacilli GR-1 and RC-14) significantly increased GEC barrier integrity, as measured by transepithelial electrical resistance (TER). Both GR-1 and RC-14 significantly reduced GEC barrier permeability as measured by a dextran dye leakage assay, whereas L. crispatus did not. Conversely, hormones did not alter barrier integrity nor barrier permeability. However, hormones did alter secretion of cytokines and chemokins by GECs. GECs grown in the presence of estrogen decreased TNF-α, IL-1α, IL-1β and IL-8 secretion in comparison to no hormone treatment, while GECs grown in the presence of MPA significantly decreased MIP-1α and TNF-α secretion. In the presence of HIV both GR-1 and RC-14 were able to confer an increase in barrier integrity similar to that observed with GR-1 and RC-14 treatment alone. Addionally, GECs grown in the presence of E2 and MPA displayed a less inflammatory (TNF-α, IL-1α, and IL-1β) environment when exposed to HIV compared to no hormone and P4. Interstingly, the decrease in inflammation was not observed when measuring chemokines such as IL-8 and RANTES. Furthermore, probiotic bacteria were able to significantly reduce HIV mediated increases in TNF-α when grown in the presence of no hormone, P4, and MPA. A similar trend was observed for GECs grown in the presence of E2 however, given that E2 reduced the TNF-α response mediated by HIV, results were not significant. Overall, probiotic lactobacilii GR-1 and RC-14 enhanced GEC barrier functions while E2 and MPA appeared to exert an anti-inflammatory effect on epithelial cell innate responses in both the presence and absence of HIV. Conclusions: In our system, probiotic lactobacilli enhanced GEC barrier functions and estrogen appeared to exert an anti-inflammatory effect on epithelial innate responses. Enhanced barrier function and decreased inflammation correlate with decreased in HIV acquisition and replication. These studies provide an insight into how factors in the genital microenvironment can affect HIV acquisition in the FGT, and will subsequently assist in the development of prophylactic strategies to reduce HIV transmission. / Thesis / Master of Science (MSc) / Approximately 40% of global HIV transmission occurs in the female genital tract. Although women make up more than 50% of infected individuals worldwide, the details regarding how HIV infection starts in the female genital tract remains poorly understood. The cells that line the genital tract are the first barrier against HIV entry. These cells are influenced by common factors within the genital tract microenvironment such as female sex hormones and natural bacterial populations. Previous studies have suggested that certain hormonal contraceptives or a build-up of pathogenic bacteria within the genital tract, leads to an inflammatory microenvironment and may enhance HIV acquisition. Comparatively, ‘good bacteria’ within the microenvironment have been shown to have protective effects against sexually transmitted infections. For this study, we were interested in understanding how different hormones (estrogen, progesterone and progesterone based hormonal contraceptives) and ‘good bacteria’ (specifically probiotic strains of lactobacilli), affect the cells that line the genital tract and local inflammation in the presence and absence of HIV. Therefore, we obtained cells that line the genital tract (epithelial cells) from women undergoing hysterectomies. The cells were grown in the presence or absence of hormones, exposed to ‘good bacteria’ and then challenged with HIV. In our system, probiotic lactobacilli enhanced genital epithelial cell barrier functions and estrogen appeared to exert an anti-inflammatory effect on epithelial cells. Furthermore, when genital epithelial cells were pre-treated with lactobacilli and exposed to HIV, lactobacilli treatment was able to protect against HIV mediated barrier disruption. Lactobacilli treated genital epithelial cells also reduced inflammatory markers in the presence HIV. Enhanced barrier function and decreased inflammation correlate with decrease in HIV infection and replication. This study provides insight into how factors in the genital microenvironment can affect HIV infection in the female genital tract and suggests potential prophylactic strategies to reduce HIV infection.

Page generated in 6.0828 seconds