• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 312
  • 128
  • 80
  • 67
  • 28
  • 14
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 839
  • 154
  • 139
  • 136
  • 123
  • 117
  • 112
  • 112
  • 102
  • 78
  • 72
  • 71
  • 68
  • 61
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Development and fracture behaviour of graded alumina/epoxy joins

Rutgers, Lyndal, Materials Science & Engineering, Faculty of Science, UNSW January 2005 (has links)
Introduction of a composition gradient at a join between two materials of different elastic properties should reduce the stress concentrating effect of the interfacial discontinuity. A crack oriented perpendicular to this elasticity gradient will experience mode-mixity, and possible subsequent crack deflection. Explicit analytical solutions for the stress state at the tip of an angled crack in a graded material of a given finite geometry do not exist, and ongoing crack path development in such a gradient has not been characterised. An infiltration processing technique is developed which allows two materials to be joined through a region of graded composition, of tailored width and composition profile. Composition discontinuities at layer interfaces in a stepped gradient can be tolerated due to the resulting interpenetrating network structured (INS) microstructure. Firing stresses were found to be a limitation of the processing technique, overcome by limiting the steepness of the elastic gradient. Alumina and epoxy resin graded composites were produced and tested under monotonic loading, resulting in stable crack path evolution. Stress-field asymmetry at the tip of a crack oriented perpendicular to an elastic gradient was demonstrated, followed by subsequent crack deflection. Stress intensity factor and deflection angle increase with increasing gradient steepness. Rising R-curve behaviour was demonstrated for all compositions of the INS composite, with initiation and plateau toughness decreasing with increasing epoxy content. Evidence of crack bridging by intact ligaments of the epoxy phase in the crack wake explains this behaviour. Crack deflection towards the epoxy region was anticipated and demonstrated for all gradient configurations. An increase in relative crack depth was seen to increase mode-mixity at the crack-tip and subsequent crack deflection, up to a relative depth of ~0.5. No conclusive evidence was found for the influence of crack bridging on crack deflection. Toughness was shown to increase with the inclusion of a microstructural gradient. Measured toughness within graded samples was shown to be controlled by both the local composition and the volume of bridging ligaments in the crack wake. The optimum gradient should ??? extend over the widest region practical, ??? encompass the widest composition range possible, and ??? demonstrate extrinsic crack extension toughening.
222

Direct atom transfer vs. ring expansion in reaction of rhenium oxo complexes with cyclooctene epoxides and episulfides

Khownium, Kriangsak 11 August 2003 (has links)
Graduation date: 2004
223

Influence of accumulated surface charges on partial discharge activity at micro gap delamination in epoxy GIS spacer

Okubo, Hitoshi, Mansour, Diaa-Eldin A., Kojima, Hiroki, Hayakawa, Naoki, Endo, Fumihiro 19 July 2009 (has links)
No description available.
224

Bond Behaviour of Beams Reinforced with Near Surface Mounted Carbon Fibre Reinforced Polymer Rods under Fatigue Loading

Abdel Wahab, Noran January 2011 (has links)
Over the past decade, extensive research has been conducted on the strengthening of reinforced concrete (RC) structures using externally bonded fibre reinforced polymer (FRP). More recently, near-surface mounted (NSM) FRP reinforcement has attracted an increasing amount of research as well as practical applications. In the NSM method, grooves are first cut into the concrete cover of an RC element and the FRP reinforcement is bonded inside the groove with an appropriate filler (typically epoxy paste or cement grout). The FRP reinforcement is either prestressed or non-prestressed depending on the required level of strengthening. In all cases, the bond between an NSM bar and the substrate material plays a key role in ensuring the effectiveness of NSM strengthening. The present work investigated experimentally the bond behaviour of non-prestressed and prestressed beams reinforced with near surface mounted carbon fibre reinforced polymer (CFRP) bars under monotonic and fatigue loading. Forty concrete beams were cast and tested in seven groups. The test variables considered in this study were: presence of internal steel reinforcement or not, the type of CFRP rod (spirally wound or sand coated) and the prestressing force (non-prestressed or prestressed). Twenty eight beams were strengthened with non-prestressed CFRP rods; fifteen beams without internal steel reinforcement and thirteen beams with internal steel. Ten beams with internal steel were strengthened with prestressed CFRP rods. The beams were tested in four point bending. In each group, one beam was loaded monotonically. The remaining beams were loaded under different fatigue load levels. The minimum load was kept constant for all beams at 10% of their monotonic capacity and the peak load was varied from one beam to another (denoted as a percentage of the peak load level). Twenty eight beams were strengthened with non-prestressed CFRP rods. Bond failures for the beams with and without internal steel, strengthened with CFRP rods and tested under monotonic or fatigue loads was by debonding between the CFRP rod and the epoxy that started at the loading point and as the load was increased or cycled, the debonding spread towards the support until failure occurred. A comparison of the fatigue life curves for the beams with and without steel, strengthened with CFRP rods revealed that the sand coated rod had better bond characteristics than the spirally wound rod (at the same load range the beam strengthened with sand coated rod had a longer life than the beam strengthened with spirally wound rod). Beams with internal steel, strengthened with CFRP rods and tested under fatigue loading failed in bond at high load levels (short fatigue lives) and by rupture of the steel rebar at low load levels (long fatigue lives). Ten beams with internal steel were strengthened with prestressed CFRP rods. The CFRP rods were prestressed to a force of 62 kN which corresponds to 45% and 40% of the monotonic capacity of the spirally wounded and sand coated rods, respectively. Almost all the beams with internal steel that were strengthened with prestressed CFRP rods failed by slipping between the CFRP rod and the epoxy that started at the support and propagated inwards towards the loading point. The exception to this was the beam strengthened with prestressed sand coated rod and tested under monotonic loading that failed by debonding between the CFRP rod and the epoxy that started at the loading point and propagated towards the support. Comparing the load range (kN) versus life curve for the beams with steel, strengthened with prestressed spirally wound and sand coated rods that failed in bond, shows that the beam strengthened with sand coated rod has longer fatigue lives than beam strengthened with spirally wound rod. A model was used to describe the progress of the debonding crack until excessive slipping occurred. The model predicted the number of cycles until excessive slipping between the CFRP rod and the epoxy occurred and the forces in the CFRP rod at all locations in the shear span at the onset of failure with reasonable accuracy.
225

Manufacturing structurally integrated three dimensional phased array antennas

Pine, Shannon Robert 06 April 2006 (has links)
A phased array antenna differs from a conventional antenna, such as a dish antenna, in that it coherently adds radiation from multiple radiating elements instead of mechanical positioning to direct RF energy. When transmitting and receiving information from a source while in motion, a phased array antenna can continuously adjust its signal to focus on the source. New antenna designs focus on integrating phased array antennas into the structure of the antenna platform, as advanced antenna platforms require the antenna to take up less and less real estate. With further development of phased array antennas, new designs become increasingly complex. The manufacturing techniques to facilitate the integration of complex antenna designs into the structure of an antenna platform must be developed, as traditional manufacturing operations, such as injection molding, machining and bulk deformation processes, are not well suited to create the small details and complex three dimensional lattice designs of the antennas. Innovative solutions need to be developed that allow the manufacture of complex antennas, thereby enabling testing to be performed on actual devices. The results from testing physical models can buttress analytical models and lead to better antenna designs. This work developed and studied suitable methods for manufacturing three-dimensional, structurally-integrated antennas.
226

Dispersion and Characterization of Nickel Nanostrands in Thermoset and Thermoplastic Polymers

Whalen, Casey Allen 2011 December 1900 (has links)
Nickel Nanostrands (NiNS) are nano-particles that are highly branched and have a high aspect ratio. These particles show promise as excellent additives to composites when electrical conductivity is desired. Unfortunately, there is very little research done on dispersing powdered NiNS in various polymer matrices. This thesis covers the research in dispersing NiNS in three separate polymer systems, and related composite processing and characterization. An aromatic polyimide (CP2) is first used as a thermoplastic matrix and attempts to incorporate NiNS via an in-situ processing technique concurrent with in-situ polymerization are detailed. Epoxy is then used as a representative thermoset where the NiNS are dispersed in the resin before a hardener is added. The last polymer tested is thermoplastic Polyvinylidene Fluoride (PVDF). NiNS are introduced to this polymer in a solution mixture. Once dispersed, the PVDF solution is heated until the solvent evaporates leaving a PVDF melt containing NiNS, which is subsequently cooled. Samples of all three polymer nano-composites are created and dispersion is observed with an optical microscope. Using DSC, DMA and dielectric spectroscopy, thermal, mechanical and electrical properties are measured and analyzed. Results for the CP2 nano-composites showed that during the cure phase, the NiNS settled to the bottom of the films resulting in a non-dispersed composite. This result highlighted the difference between NiNS and other more conventional nano-particles, namely that the NiNS are larger and heavier, therefore are not 'locked into' a dispersed state by the polymer chains. Several techniques were investigated for dispersing NiNS in the epoxy matrix. A method without solvent was shown to be the most effective and resulted in a well-dispersed nano-composite that showed increases in electrical conductivity and dielectric constant as NiNS concentration increases. Enhancement in storage modulus was observed above the composite's Tg as well. PVDF nano-composites also showed good dispersion and a general increase in electrical properties. Below Tg, storage modulus decreases at first before a slight recovery with increasing NiNS. Beyond Tg, the opposite effect is observed. FTIR measurements for the PVDF were also taken and showed no significant changes in the polymer morphology with additions of NINS.
227

Structure Reinforcement

Chen, Shih-Chang 27 June 2007 (has links)
¡uStructure Reinforcement¡v is necessary when the load of a building or bridge has exceeded that for which it was originally designed. Reinforcement is required when there are changes in the function of a building, poor or incorrect design, flood or earthquake damage, revision of government regulations resulting in new specifications for construction materials, or changes in job practices. The concept of structure reinforcement developed in Japan in the 1970¡¦s, and was introduced into Taiwan at the end of the decade. Short operating times, high strength, and economy of space are among the advantages which make the concept attractive. Higher cost, however, has slowed its implementation. The current ratio of new to reinforced construction in developing countries is 6:4; in developed countries 4:6. As Taiwan is now considered a developed country lacking land resources but with strict building regulations, structure reinforcement is more and more in demand. China, on the other hand, is still ranked a developing country, but, due to the current construction boom and weak infrastructure, recent structures often need reinforcement. During the design and calculation of structure reinforcement, the usual choice of reinforcing materials is epoxy resin, special cement, carbon fiber sheets, and carbon steel plates. SB Construction is a medium sized company subject to the natural rise and fall in construction demand. In the past, SB used only special cement as reinforcement material as it had no production line for epoxy resin or carbon fiber steel. This report concerns itself mainly with how, from a business angle, environment analysis and internal management ability can establish a competitive advantage adapted to its own business model and how to evaluate the effectiveness of this strategy. Section One: background and motivation for research, purpose and structure. Section Two: research design, discussion of theory, method and procedures. Section Three: industry analysis, development of structure reinforcement, analysis and comparison of Taiwan and China, and analysis of superior products. Section Four: case study, introduction to the company, changes in strategy, expectations and goals. Last: conclusion and suggestions for adapting to changes in the environment, discussion of strategies for future consideration and further development.
228

The Study of Partial Discharges Analysis in Epoxy-Resin Transformers Using Ultrasonic Technology

Chen, Li-Jung 12 July 2007 (has links)
The partial discharges (PD) measurement approach in power equipments is a very important inspection technique for insulation deterioration assessment. The PD based approach possesses the greatest potential for further development. This study proposes a noncontact type acoustic measurement system. We first investigate an acoustic measurement method in the laboratory. To prove the accuracy of the acoustic measurements, we proceed with, in the laboratory, signal-pattern comparison between the acoustic measurement method and the pulse current method. This study creates polar-coordinate and discharge type identification patterns. We propose the use of the q-£p-t patterns, the polar-coordinate patterns and discharge type identification patterns, with mutual cross-reference, to identify the discharge type. Then this study applies the wavelet transform to suppress noises; a wavelet mother function most similar to the acoustic PD signals is chosen and then set the filtering threshold value for the wavelet transform. The signals' features will be extracted after the noises are eliminated. The experimental results indicate that the application of wavelet transform can effectively eliminate the field noises. Next, the features will be used to build the training database for the back-propagation neural network (BNN) to construct the discharge patterns' recognition and identification system. Finally, we apply the finished neural networks to field signal-pattern identification. The proposed acoustic measurement system is applied on line to epoxy-resin transformers, power distributors, and the like. The superior measurement results we obtained shall be able to correctly identify power equipment's PD fault types.
229

Quantum chemical studies of olefin epoxidation and benzyne biradicals /

Lundin, Angelica. January 2007 (has links)
Univ., Diss.--Göteborg, 2007. / Enth. außerdem 5 Zeitschriftenaufsätze.
230

Effect of accelarator on the curing, chemorheology, thermal and mechanical properties of benzoxazine and benzoxazine epoxy resins.

Botha, Surene. January 2014 (has links)
M. Tech. Engineering: Chemical. / Aims to establish the cure kinetics of the thermosetting systems through the use of rheology and differential scanning calorimetry. Dynamic mechanical and thermal mechanical analyses will be used to ascertain the mechanical properties. The resistance to thermal degradation will be determined by thermogravimetric analysis.

Page generated in 0.0586 seconds