Spelling suggestions: "subject:"equations dde navierstokes compressible"" "subject:"equations dde navierstokes incompressible""
1 |
Méthodes numériques de type Volumes Finis sur maillages non structurés pour la résolution de thermique anisotrope et des équations de Navier-Strokes compressibles / Finite Volume methods on unstructured grids for solving anisotropic heat transfer and compressible Navier-Stokes equationsJacq, Pascal 09 July 2014 (has links)
Lors de la rentrée atmosphérique nous sommes amenés à modéliser trois phénomènes physiques différents. Tout d'abord, l'écoulement autour du véhicule entrant dans l'atmosphère est hypersonique,il est caractérisé par la présence d'un choc fort et provoque un fort échauffement du véhicule. Nous modélisons l'écoulement par les équations de Navier-Stokes compressibles et l'échauffement du véhicule au moyen de la thermique anisotrope. De plus le véhicule est protégé par un bouclier thermique siège de réactions chimiques que l'on nomme communément ablation.Dans le premier chapitre de cette thèse nous présentons le schéma numérique de diffusion CCLAD (Cell-Centered LAgrangian Diffusion) que nous utilisons pour résoudre la thermique anisotrope. Nous présentons l'extension en trois dimensions de ce schéma ainsi que sa parallélisation.Nous continuons le manuscrit en abordant l'extension de ce schéma à une équation de diffusion tensorielle. Cette équation est obtenue en supprimant les termes convectifs de l'équation de quantité de mouvement des équations de Navier-Stokes. Nous verrons qu'une pénalisation doit être introduite afin de pouvoir inverser la loi constitutive et ainsi appliquer la méthodologie CCLAD. Nous présentons les propriétés numériques du schéma ainsi obtenu et effectuons des validations numériques.Dans le dernier chapitre, nous présentons un schéma numérique de type Volumes Finis permettant de résoudre les équations de Navier-Stokes sur des maillages non-structurés obtenu en réutilisant les deux schémas de diffusion présentés précédemment. / When studying the problem of atmospheric reentry we need to model three different physical phenomenons. First, the ow around the atmospheric reentry vehicle is hypersonic, it is characterized by the presence of a strong shock which leads to a rapid heating of the vehicle. We model the ow using the compressible Navier-Stokes equations and the heating of the vehicle is modeled with the anisotropic heat transfer equation. Furthermore the vehicle is protected by an heat shield, where thermochemical reactions, commonly named ablation, occurs.In the first chapter of this thesis we introduce the numerical diffusion scheme CCLAD (Cell-Centered LAgrangian Diffusion) that we use to solve the anisotropic heat diffusion. We develop its non trivial extension to three-dimensional geometries and present its parallelization. We continue this thesis by the presentation of the extension of this scheme to tensorial diffusion. This equation is obtained by suppressing the convective terms of the momentum equation of the Navier-Stokes equations. We show that we need to introduce a penalization term in order to be able to invert the constitutive law. The invertibility of the constitutive law allows us to apply the CCLAD methodology to this equation straightforwardly. We present the numerical properties of this scheme and show numerical validations.In the last chapter, we present a Finite Volume scheme on unstructured grids that solves the compressible Navier-Stokes equations. This numerical scheme is mainly obtained by gathering the contributions of the two diffusion schemes we developed in the previous chapters.
|
2 |
Analysis and control of some fluid models with variable density / Analyse et contrôle de certains modèles de fluide à densité variableMitra, Sourav 23 October 2018 (has links)
Dans cette thèse, nous étudions des modèles mathématiques concernant certains problèmes d'écoulement de fluide à densité variable. Le premier chapitre résume l'ensemble de la thèse et se concentre sur les résultats obtenus, la nouveauté et la comparaison avec la littérature existante. Dans le deuxième chapitre, nous étudions la stabilisation locale des équations non homogènes de Navier-Stokes dans un canal 2d autour du flot de Poiseuille. Nous concevons un contrôle feedback de la vitesse qui agit sur l'entrée du domaine de sorte que la vitesse et la densité du fluide soient stabilisées autour du flot de Poiseuille, à condition que la densité initiale soit donnée par une constante additionnée d'une perturbation dont le support se situe loin du bord latéral du canal. Dans le troisième chapitre, nous étudions un système couplant les équations de Navier-Stokes compressibles à une structure élastique située à la frontière du domaine fluide. Nous prouvons l'existence locale de solutions solides pour ce système couplé. Dans le quatrième chapitre, notre objectif est d'étudier la nulle- contrôlabilité d'un problemè d'interaction fluide-structure linéarisé dans un canal bi dimensional. L'écoulement du fluide est ici modélisé par les équations de Navier-Stokes compressibles. En ce qui concerne la structure, nous considérons une poutre de type Euler-Bernoulli amortie située sur une partie du bord. Dans ce chapitre, nous établissons une inégalité d'observabilité pour le problème considéré d'interaction fluid-structure linéarisé qui constitue le premier pas vers la preuve de la nulle contrôlabilité du système. / In this thesis we study mathematical models concerning some fluid flow problems with variable density. The first chapter is a summary of the entire thesis and focuses on the results obtained, novelty and comparison with the existing literature. In the second chapter we study the local stabilization of the non-homogeneous Navier-Stokes equations in a 2d channel around Poiseuille flow. We design a feedback control of the velocity which acts on the inflow boundary of the domain such that both the fluid velocity and density are stabilized around Poiseuille flow provided the initial density is given by a constant added with a perturbation, such that the perturbation is supported away from the lateral boundary of the channel. In the third chapter we prove the local in time existence of strong solutions for a system coupling the compressible Navier-Stokes equations with an elastic structure located at the boundary of the fluid domain. In the fourth chapter our objective is to study the null controllability of a linearized compressible fluid structure interaction problem in a 2d channel where the structure is elastic and located at the fluid boundary. In this chapter we establish an observability inequality for the linearized fluid structure interaction problem under consideration which is the first step towards the direction of proving the null controllability of the system.
|
3 |
Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince.Ersoy, Mehmet 10 September 2010 (has links) (PDF)
Dans la première partie, on dérive formellement les équations \PFS (\textbf{P}ressurised and \textbf{F}ree \textbf{S}urface) pour les écoulements mixtes en conduite fermée avec variation de géométrie. On écrit l'approximation de ces équations à l'aide d'un solveur VFRoe et d'un solveur cinétique en décentrant les termes sources aux interfaces. En particulier, on propose le décentrement d'un terme de friction, donnée par la loi de Manning-Strickler, en introduisant la notion de \emph{pente dynamique}. Enfin, on construit un schéma bien équilibré préservant les états stationnaires au repos en définissant une matrice à profil stationnaire conçue pour le schéma VFRoe. Suivant cette idée, on construit, en toute généralité, un schéma bien équilibré préservant tous les états stationnaires. Pour traiter les points de transitions (i.e. le changement de type d'écoulement surface libre vers charge et vice et versa), on étend la méthode des \og ondes fantômes\fg~ dans ce contexte et on propose un traitement complètement cinétique. Dans la deuxième partie, on étudie des équations primitives compressibles simplifiées dans le cadre de la modélisation de la dynamique de l'atmosphère. En particulier, on obtient un résultat d'existence de solutions faibles globales en temps en dimension $2$ d'espace. On établit également un résultat de stabilité de solutions faibles pour le modèle en dimension $3$ d'espace. À cet égard, on introduit un changement de variables convenable qui permet de transformer les équations initiales en un modèle plus simple à étudier. Dans la troisième et dernière partie, on présente une courte introduction à la cavitation. En particulier, on rappelle les différents types de cavitation et les modèles mathématiques de Rayleigh-Plesset pour l'étude d'une bulle isolée et un modèle de mélange plus complexe. En vue de modéliser la cavitation dans les conduites fermées, on introduit un modèle à deux couches pour prendre en compte, dans un premier temps, l'effet d'une poche d'air comprimée par la surface libre et les bords de la conduite. En particulier, le système obtenu, à $4$ équations, est généralement non hyperbolique et ses valeurs propres ne sont pas calculables explicitement. On propose alors une approximation numérique basée sur un schéma cinétique mono-couche. Dans le dernier chapitre, on dérive formellement un modèle de transport de sédiments basé sur l'équation de Vlasov couplée à des équations de Navier-Stokes compressibles avec un tenseur de viscosité anisotrope. Ce modèle est ensuite obtenu par le biais de deux analyses asymptotiques.
|
4 |
Méthodes numériques de type Volumes Finis sur maillages non structurés pour la résolution de la thermique anisotrope et des équations de Navier-Stokes compressiblesJacq, Pascal 09 July 2014 (has links) (PDF)
Lors de la rentrée atmosphérique nous sommes amenés à modéliser trois phénomènes physiques différents. Tout d'abord, l'écoulement autour du véhicule entrant dans l'atmosphère est hypersonique, il est caractérisé par la présence d'un choc fort et provoque un fort échauffement du véhicule. Nous modélisons l'écoulement par les équations de Navier-Stokes compressibles et l'échauffement du véhicule au moyen de la thermique anisotrope. De plus le véhicule est protégé par un bouclier thermique siège de réactions chimiques que l'on nomme communément ablation.<br /><br /> Dans le premier chapitre de cette thèse nous présentons le schéma numérique de diffusion CCLAD (Cell-Centered LAgrangian Diffusion) que nous utilisons pour résoudre la thermique anisotrope. Nous présentons l'extension en trois dimensions de ce schéma ainsi que sa parallélisation.<br /> Nous continuons le manuscrit en abordant l'extension de ce schéma à une équation de diffusion tensorielle. Cette équation est obtenue en supprimant les termes convectifs de l'équation de quantité de mouvement des équations de Navier-Stokes. Nous verrons qu'une pénalisation doit être introduite afin de pouvoir inverser la loi constitutive et ainsi appliquer la méthodologie CCLAD. Nous présentons les propriétés numériques du schéma ainsi obtenu et effectuons des validations numériques.<br /> Dans le dernier chapitre, nous présentons un schéma numérique de type Volumes Finis permettant de résoudre les équations de Navier-Stokes sur des maillages non-structurés obtenu en réutilisant les deux schémas de diffusion présentés précédemment.
|
Page generated in 0.1454 seconds