Spelling suggestions: "subject:"equations off evolution"" "subject:"equations oof evolution""
1 |
Estabilidade de soluções ondas viajantes periodicas para as equações de Boussinesq e de Korteweg - de Vries / Stability of periodic travelling wave solutions for the Boussinesq and Korteweg- de Vries equationsPaiva, Lynnyngs Kelly Arruda Saraiva de 24 June 2005 (has links)
Orientadores: Jaime Angulo Paiva, Marcia A. G. Scialom / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T09:39:02Z (GMT). No. of bitstreams: 1
Paiva_LynnyngsKellyArrudaSaraivade_D.pdf: 1499074 bytes, checksum: 7fef4b8257781913440ab95a338aedcc (MD5)
Previous issue date: 2005 / Doutorado / Matematica / Doutor em Matemática
|
2 |
Analyse mathématique de quelques équations intervenant en dynamique des populations et en cinétique des gaz / Mathematical analysis of some equations arising in the dynamics of populations and the kinetic of gasAl Izeri, Abdul Majeed 08 December 2016 (has links)
Les travaux présentés dans cette thèse portent sur l’analyse mathématique de quelques équations intervenant en dynamique des populations et en cinétique des gaz. On s’est intéressé tout d’abord à une version non linéaire d’un modèle dû à Lebowitz et Rubinow en 1974 pour décrire une population cellulaire. On a établi des résultats d’existence et d’unicité aussi bien les solutions au sens de Bénilan que les solutions fortes du problème d’évolution correspondant. Cette analyse a été étendue ensuite à une perturbation de ce modèle par un opérateur non linéaire et pour des conditions aux limites locales et non locales. Cette partie a été complétée par l’étude des résultats d’existence des solutions du problème stationnaire correspondant. Le second volet de ce travail traite de l’existence des solutions d’une version non linéaire stationnaire d’un modèle dû à Rotenberg en 1983. Le dernier chapitre de ce travail à été consacré à l’analyse spectrale d’une équation de transport neutronique faisant intervenir des opérateurs de collision élastiques et inélastiques. Le problème d’évolution correspondant ainsi que le comportement asymptotique (pour les grands temps) de la solution ont été considéré pour des conditions aux limites périodiques. / The work presented in this thesis deals with the mathematical analysis of some equations arising in the dynamics of populations and the kinetic of gas. First, we focused on a non-linear version of a model introduced by Lebowitz and Rubinow in 1974 to describe a cells population. We discussed the existence and the uniqueness of solutions of both Bénilan’s solution and strong solutions to the corresponding evolution equation. This analysis was subsequently extended to a perturbation of this model by a nonlinear operator for local and non-local boundary conditions. This part was supplemented by the study of existence of solutions to the corresponding stationary problem. In chapter 5, we discuss the existence of solutions to a stationary nonlinear version of a model describing the evolution of a cells population introduced by Rotenberg in 1983. The last chapter of this work is devoted to the spectral analysis of a neutron transport equation involving elastic and inelastic collision operators. The corresponding evolution problem as well as the asymptotic behavior (for large times) of the solution was considered for periodic boundary conditions.
|
3 |
Uopštena rešenja nekih klasa frakcionih parcijalnih diferencijalnih jednačina / Generalized Solutions for Some Classes of Fractional Partial Diferential EquationsJapundžić Miloš 26 December 2016 (has links)
<p>Doktorska disertacija je posvećena rešavanju Košijevog problema odabranih klasa frakcionih diferencijalnih jednačina u okviru Kolomboovih prostora uopštenih funkcija. U prvom delu disertacije razmatrane su nehomogene evolucione jednačine sa prostorno frakcionim diferencijalnim operatorima reda 0 < α < 2 i koeficijentima koji zavise od x i t. Ova klasa jednačina je aproksimativno rešavana, tako što je umesto početne jednačine razmatrana aproksimativna jednačina data preko regularizovanih frakcionih izvoda, odnosno, njihovih regularizovanih množitelja. Za rešavanje smo koristili dobro poznate uopštene uniformno neprekidne polugrupe operatora. U drugom delu disertacije aproksimativno su rešavane nehomogene frakcione evolucione jednačine sa Kaputovim<br />frakcionim izvodom reda 0 < α < 2, linearnim, zatvorenim i gusto definisanim<br />operatorom na prostoru Soboljeva celobrojnog reda i koeficijentima koji zavise<br />od x. Odgovarajuća aproksimativna jednačina sadrži uopšteni operator asociran sa polaznim operatorom, dok su rešenja dobijena primenom, za tu svrhu <br />u disertaciji konstruisanih, uopštenih uniformno neprekidnih operatora rešenja.<br />U oba slučaja ispitivani su uslovi koji obezbeduju egzistenciju i jedinstvenost<br />rešenja Košijevog problema na odgovarajućem Kolomboovom prostoru.</p> / <p>Colombeau spaces of generalized functions. In the firs part, we studied inhomogeneous evolution equations with space fractional differential operators of order 0 < α < 2 and variable coefficients depending on x and t. This class of equations is solved approximately, in such a way that instead of the originate equation we considered the corresponding approximate equation given by regularized fractional derivatives, i.e. their regularized multipliers. In the solving procedure we used a well-known generalized uniformly continuous semigroups of operators. In the second part, we solved approximately inhomogeneous fractional evolution equations with Caputo fractional derivative of order 0 < α < 2, linear, closed and densely defined operator in Sobolev space of integer order and variable coefficients depending on x. The corresponding approximate equation is a given by the generalized operator associated to the originate operator, while the solutions are obtained by using generalized uniformly continuous solution operators, introduced and developed for that purpose. In both cases, we provided the conditions that ensure the existence and uniqueness solutions of the Cauchy problem in some Colombeau spaces.</p>
|
Page generated in 0.1561 seconds