• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variedades de Gelfand-Tsetlin / Gelfand-Tsetlin varieties

Monsalve, German Alonso Benitez 21 November 2016 (has links)
Serge Ovsienko provou que a variedade de Gelfand-Tsetlin para gl(n) é equidimensional (i.e., todas suas componentes irredutíveis têm a mesma dimensão) com dimensão n(n-1)/2. Este resultado é conhecido como \"Teorema de Ovsienko\" e tem importantes consequências na Teoria de Representacões de Álgebras. Neste trabalho, provamos uma versão fraca do Teorema de Ovsienko para gl(n) e estendemos tal versão fraca a uma estrutura que tem como caso particular gl(3), esse é o caso do grupo quântico Yangian Yp(gl(3)) de nível p. Além disso, o Teorema de Ovsienko também tem consequências na Geometria Simplética, especificamente na equidimensionalidade das fibras em uma projeção da aplicação de Kostant-Wallach. Neste trabalho apresentamos a generalização deste resultado. / Serge Ovsienko proved that the Gelfand-Tsetlin variety for gl(n) is equidimensional (i.e., all its irreducible components have the same dimension) with dimension n(n-1)/2. This result is known as \"Ovsienko\'s Theorem\" and it has important consequences in Representation Theory of Algebras. In this work, we prove a weak version of Ovsienko\'s Theorem for gl(n) and we extend that weak version to a structure which has as particular case gl(3), this case is the quantum group level p Yangian Yp(gl(3)). Moreover, the theorem of Ovsienko also has consequences in Symplectic Geometry, more concretely in the equidimensionality of the fibers in a projection of the Kostant-Wallach map. In this work we will present the generalization of that result.
2

Variedades de Gelfand-Tsetlin / Gelfand-Tsetlin varieties

German Alonso Benitez Monsalve 21 November 2016 (has links)
Serge Ovsienko provou que a variedade de Gelfand-Tsetlin para gl(n) é equidimensional (i.e., todas suas componentes irredutíveis têm a mesma dimensão) com dimensão n(n-1)/2. Este resultado é conhecido como \"Teorema de Ovsienko\" e tem importantes consequências na Teoria de Representacões de Álgebras. Neste trabalho, provamos uma versão fraca do Teorema de Ovsienko para gl(n) e estendemos tal versão fraca a uma estrutura que tem como caso particular gl(3), esse é o caso do grupo quântico Yangian Yp(gl(3)) de nível p. Além disso, o Teorema de Ovsienko também tem consequências na Geometria Simplética, especificamente na equidimensionalidade das fibras em uma projeção da aplicação de Kostant-Wallach. Neste trabalho apresentamos a generalização deste resultado. / Serge Ovsienko proved that the Gelfand-Tsetlin variety for gl(n) is equidimensional (i.e., all its irreducible components have the same dimension) with dimension n(n-1)/2. This result is known as \"Ovsienko\'s Theorem\" and it has important consequences in Representation Theory of Algebras. In this work, we prove a weak version of Ovsienko\'s Theorem for gl(n) and we extend that weak version to a structure which has as particular case gl(3), this case is the quantum group level p Yangian Yp(gl(3)). Moreover, the theorem of Ovsienko also has consequences in Symplectic Geometry, more concretely in the equidimensionality of the fibers in a projection of the Kostant-Wallach map. In this work we will present the generalization of that result.

Page generated in 0.0964 seconds