Spelling suggestions: "subject:"ergodic capacity"" "subject:"crgodic capacity""
1 |
Fundamental Limits of Poisson Channels in Visible Light CommunicationsAin-Ul-Aisha, FNU 18 April 2017 (has links)
Visible Light Communications (VLC) has recently emerged as a viable solution for solving the spectrum shortage problem. The idea is to use artificial light sources as medium to communicate with portable devices. In particular, the light sources can be switched on and off with a very high-frequency corresponding to 1s and 0s of digital communication. The high-frequency on-off switching can be detected by electronic devices but not the human eyes, and hence will not affect the light sources' illumination functions. In VLC, if a receiver is equipped with photodiodes that count the number of arriving photons, the channels can be modeled as Poisson channels. Unlike Gaussian channels that are suitable for radio spectrum and have been intensively investigated, Poisson channels are more challenging and are not that well understood. The goal of this thesis is to characterize the fundamental limits of various Poisson channels that models different scenarios in VLC. We first focus on single user Poisson fading channels with time-varying background lights. Our model is motivated by indoor optical wireless communication systems, in which the noise level is affected by the strength of the background light. We study both the single-input single-output (SISO) and the multiple-input and multiple-output (MIMO) channels. For each channel, we consider scenarios with and without delay constraints. For the case without a delay constraint, we characterize the optimal power allocation scheme that maximizes the ergodic capacity. For the case with a strict delay constraint, we characterize the optimal power allocation scheme that minimizes the outage probability. We then extend the study to the multi-user Poisson channels and analyze the sum-rate capacity of two-user Poisson multiple access channels (MAC). We first characterize the sum-rate capacity of the non-symmetric Poisson MAC when each transmitter has a single antenna. We show that, for certain channel parameters, it is optimal for a single-user to transmit to achieve the sum-rate capacity. This is in sharp contrast to the Gaussian MAC, in which both users must transmit, either simultaneously or at different times, in order to achieve the sum-rate capacity. We then characterize the sum-rate capacity of the Poisson MAC with multiple antennas at each transmitter. By converting a non-convex optimization problem with a large number of variables into a non-convex optimization problem with two variables, we show that the sum-rate capacity of the Poisson MAC with multiple transmit antennas is equivalent to a properly constructed Poisson MAC with a single antenna at each transmitter. We further analyze the sum-rate capacity of two-user Poisson MIMO multiple-access channels (MAC), when both the transmitters and the receiver are equipped with multiple antennas. We first characterize the sum-rate capacity of the Poisson MAC when each transmitter has a single antenna and the receiver has multiple antennas. We show that similar to Poisson MISO-MAC channels, for certain channel parameters, it is optimal for a single user to transmit to achieve the sum-rate capacity, and for certain channel parameters, it is optimal for both users to transmit. We then characterize the sum-rate capacity of the channel where both the transmitters and the receiver are equipped with multiple antennas. We show that the sum-rate capacity of the Poisson MAC with multiple transmit antennas is equivalent to a properly constructed Poisson MAC with a single antenna at each transmitter.
|
2 |
Power Adaption Over Fluctuating Two-Ray Fading Channels and Fisher-Snedecor F Fading ChannelsZhao, Hui 04 1900 (has links)
In this thesis, we investigate the ergodic capacity under several power adaption schemes, including optimal power and rate algorithm (OPRA), optimal rate algo rithm (ORA), channel inversion (CI), and truncated channel inversion (TCI), over fluctuating two-ray (FTR) fading channels and Fisher-Snedecor F fading channels. After some mathematical manipulations, the exact expressions for the EC under those power adaption schemes are derived. To simplify the expressions and also get some insights from the analysis, the corresponding asymptotic expressions for the EC are also derived in order to show the slope and power offset of the EC in the high signal-to-noise ratio (SNR) region. These two metrics, i.e., slope and power offset, govern the EC behaviour in the high SNR region. Specifically, from the derived asymptotic expressions, we find that the slope of the EC of OPRA and ORA over FTR fading channels is always unity with respect to the average SNR in the log-scale in high SNRs, while the asymptotic EC of the TCI method is not a line function in the log-scale. For the Fisher-Snedecor F fading channel, the slope of asymptotic EC under OPRA, ORA, and CI (m > 1) schemes is unity in the log-scale, where m is the fading parameter. The slope of the TCI method depends on m, i.e., unity for m > 1 and m for m > 1, while the asymptotic EC of TCI is not a line function for m = 1. Finally, Monte-Carlo simulations are used to demonstrate the correctness of the derived expressions.
|
3 |
Broadcast Strategy for Delay-Limited Communication over Fading ChannelsYoo, Jae Won 03 October 2013 (has links)
Delay is an important quality-of-service measure for the design of next-generation wireless networks. This dissertation considers the problem of delay-limited communication over block-fading channels, where the channel state information is available at the receiver but not at the transmitter. For this communication scenario, the difference between the ergodic capacity and the maximum achievable expected rate (the expected capacity) for coding over a finite number of coherent blocks represents a fundamental measure of the penalty incurred by the delay constraint.
This dissertation introduces a notion of worst-case expected-capacity loss. Focusing on the slow-fading scenario (one-block delay), the worst-case additive and multiplicative expected-capacity losses are precisely characterized for the point-to- point fading channel. Extension to the problem of writing on fading paper is also considered, where both the ergodic capacity and the additive expected-capacity loss over one-block delay are characterized to within one bit per channel use.
The problem with multiple-block delay is considerably more challenging. This dissertation presents two partial results. First, the expected capacity is precisely characterized for the point-to-point two-state fading channel with two-block delay. Second, the optimality of Gaussian superposition coding with indirect decoding is established for a two-parallel Gaussian broadcast channel with three receivers. Both results reveal some intrinsic complexity in characterizing the expected capacity with multiple-block delay.
|
4 |
On the Ordering of Communication ChannelsJanuary 2014 (has links)
abstract: This dissertation introduces stochastic ordering of instantaneous channel powers of fading channels as a general method to compare the performance of a communication system over two different channels, even when a closed-form expression for the metric may not be available. Such a comparison is with respect to a variety of performance metrics such as error rates, outage probability and ergodic capacity, which share common mathematical properties such as monotonicity, convexity or complete monotonicity. Complete monotonicity of a metric, such as the symbol error rate, in conjunction with the stochastic Laplace transform order between two fading channels implies the ordering of the two channels with respect to the metric. While it has been established previously that certain modulation schemes have convex symbol error rates, there is no study of the complete monotonicity of the same, which helps in establishing stronger channel ordering results. Toward this goal, the current research proves for the first time, that all 1-dimensional and 2-dimensional modulations have completely monotone symbol error rates. Furthermore, it is shown that the frequently used parametric fading distributions for modeling line of sight exhibit a monotonicity in the line of sight parameter with respect to the Laplace transform order. While the Laplace transform order can also be used to order fading distributions based on the ergodic capacity, there exist several distributions which are not Laplace transform ordered, although they have ordered ergodic capacities. To address this gap, a new stochastic order called the ergodic capacity order has been proposed herein, which can be used to compare channels based on the ergodic capacity. Using stochastic orders, average performance of systems involving multiple random variables are compared over two different channels. These systems include diversity combining schemes, relay networks, and signal detection over fading channels with non-Gaussian additive noise. This research also addresses the problem of unifying fading distributions. This unification is based on infinite divisibility, which subsumes almost all known fading distributions, and provides simplified expressions for performance metrics, in addition to enabling stochastic ordering. / Dissertation/Thesis / Ph.D. Electrical Engineering 2014
|
5 |
Unified Tractable Model for Large-Scale Networks Using Stochastic Geometry: Analysis and DesignAfify, Laila H. 12 1900 (has links)
The ever-growing demands for wireless technologies necessitate the evolution of next generation wireless networks that fulfill the diverse wireless users requirements. However, upscaling existing wireless networks implies upscaling an intrinsic component in the wireless domain; the aggregate network interference. Being the main performance limiting factor, it becomes crucial to develop a rigorous analytical framework to accurately characterize the out-of-cell interference, to reap the benefits of emerging networks. Due to the different network setups and key performance indicators, it is essential to conduct a comprehensive study that unifies the various network configurations together with the different tangible performance metrics. In that regard, the focus of this thesis is to present a unified mathematical paradigm, based on Stochastic Geometry, for large-scale networks with different antenna/network configurations. By exploiting such a unified study, we propose an efficient automated network design strategy to satisfy the desired network objectives. First, this thesis studies the exact aggregate network interference characterization, by accounting for each of the interferers signals in the large-scale network. Second, we show that the information about the interferers symbols can be approximated via the Gaussian signaling approach. The developed mathematical model presents twofold analysis unification for uplink and downlink cellular networks literature. It aligns the tangible decoding error probability analysis with the abstract outage probability and ergodic rate analysis. Furthermore, it unifies the analysis for different antenna configurations, i.e., various multiple-input multiple-output (MIMO) systems. Accordingly, we propose a novel reliable network design strategy that is capable of appropriately adjusting the network parameters to meet desired design criteria. In addition, we discuss the diversity-multiplexing tradeoffs imposed by differently favored MIMO schemes, describe the relation between the diverse network parameters and configurations, and study the impact of temporal interference correlation on the performance of large-scale networks. Finally, we investigate some interference management techniques by exploiting the proposed framework. The proposed framework is compared to the exact analysis as well as intensive Monte Carlo simulations to demonstrate the model accuracy. The developed work casts a thorough inclusive study that is beneficial to deepen the understanding of the stochastic deployment of the next-generation large-scale wireless networks and predict their performance.
|
6 |
On the Performance of Free-Space Optical Systems over Generalized Atmospheric Turbulence Channels with Pointing ErrorsAnsari, Imran Shafique 03 1900 (has links)
Generalized fading has been an imminent part and parcel of wireless communications. It not only characterizes the wireless channel appropriately but also allows its utilization for further performance analysis of various types of wireless communication systems. Under the umbrella of generalized fading channels, a unified performance analysis of a free-space optical (FSO) link over the Malaga (M) atmospheric turbulence channel that accounts for pointing errors and both types of detection techniques (i.e. indirect modulation/direct detection (IM/DD) as well as heterodyne detection) is presented. Specifically, unified exact closed-form expressions for the probability density function (PDF), the cumulative distribution function (CDF), the moment generating function (MGF), and the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system are presented, all in terms of the Meijer's G function except for the moments that is in terms of simple elementary functions. Then capitalizing on these unified results, unified exact closed-form expressions for various performance metrics of FSO link transmission systems are offered, such as, the outage probability (OP), the higher-order amount of fading (AF), the average error rate for binary and M-ary modulation schemes, and the ergodic capacity (except for IM/DD technique, where closed-form lower bound results are presented), all in terms of Meijer's G functions except for the higher-order AF that is in terms of simple elementary functions. Additionally, the asymptotic results are derived for all the expressions derived earlier in terms of the Meijer's G function in the high SNR regime in terms of simple elementary functions via an asymptotic expansion of the Meijer's G function. Furthermore, new asymptotic expressions for the ergodic capacity in the low as well as high SNR regimes are derived in terms of simple elementary functions via utilizing moments. All the presented results are verified via computer-based Monte-Carlo simulations.
Besides addressing the pointing errors with zero boresight effects as has been addressed above, a unified capacity analysis of a FSO link that accounts for nonzero boresight pointing errors and both types of detection techniques (i.e. heterodyne detection as well as IM/DD) is also addressed. Specifically, an exact closed-form expression for the moments of the end-to-end SNR of a single link FSO transmission system is presented in terms of well-known elementary functions. Capitalizing on these new moments expressions, approximate and simple closed-form results for the ergodic capacity at high and low SNR regimes are derived for lognormal (LN), Rician-LN (RLN), and M atmospheric turbulences. All the presented results are verified via computer-based Monte-Carlo simulations.
Based on the fact that FSO links are cost-effective, license-free, and can provide even higher bandwidths compared to the traditional radio-frequency (RF) links, the performance analysis of a dual-hop relay system composed of asymmetric RF and FSO links is presented. This is complemented by the performance analysis of a dual-branch transmission system composed of a direct RF link and a dual-hop relay composed of asymmetric RF and FSO links. The performance of the later scenario is evaluated under the assumption of the selection combining (SC) diversity and the maximal ratio combining (MRC) schemes. RF links are modeled by Rayleigh fading distribution whereas the FSO link is modeled by a unified GG fading distribution. More specifically, in this work, new exact closed-form expressions for the PDF, the CDF, the MGF, and the moments of the end-to-end SNR are derived. Capitalizing on these results, new exact closed-form expressions for the OP, the higher-order AF, the average error rate for binary and M-ary modulation schemes, and the ergodic capacity are offered.
Cognitive radio networks (CRN) have also proved to improve the performance of wireless communication systems and hence based on this, the hybrid system analyzed above is extended with CRN technology wherein the outage and error performance analysis of a dual-hop transmission system composed of asymmetric RF channel cascaded with a FSO link is presented. For the RF link, an underlay cognitive network is considered where the secondary users share the spectrum with licensed primary users. Indoor femtocells act as a practical example for such networks. Specifically, it is assumed that the RF link applies power control to maintain the interference at the primary network below a predetermined threshold. While the RF channel is modeled by the Rayleigh fading distribution, the FSO link is modeled by a unified Gamma-Gamma turbulence distribution. The FSO link accounts for pointing errors and both types of detection techniques (i.e. heterodyne detection as well as IM/DD). With this model, a new exact closed-form expression is derived for the OP and the error rate of the end-to-end SNR of these systems in terms of the Meijer's G function and the Fox's H functions under amplify-and-forward relay schemes. All new analytical results are verified via computer-based Monte-Carlo simulations and are illustrated by some selected numerical results.
|
7 |
Near-Optimal Antenna Design for Multiple Antenna SystemsEvans, Daniel N. 06 March 2009 (has links) (PDF)
Multiple-input-multiple-output (MIMO) wireless systems use multiple antenna elements at the transmitter and receiver to offer improved spectral efficiency over traditional single antenna systems. In these systems, properties of the transmit and receive antenna arrays play a key role in determining the overall performance of the system. This thesis derives an upper bound on ergodic (average) channel capacity which formally links good antenna diversity performance with good ergodic capacity. As a result of this derivation, antenna arrays with good ergodic capacity performance are designed in this thesis by designing antenna arrays with near-optimal diversity gain. Several approaches are developed to design antenna array elements which achieve near-optimal diversity. These design methods only require an array geometry and the power azimuth spectrum of the propagation environment. Examples and analysis are included that illustrate advantages and disadvantages of each design technique. Three different array geometries are also investigated. Diversity performance results for each design technique and array geometry, averaged over an ensemble of typical power azimuth spectrums, are presented and compared. This analysis shows that the diversity gain achieved by the best design approach is, on average, less than 1.5 dB below the optimal diversity gain.
|
8 |
Impact of Interference from Primary User on the Performance of Cognitive Radio NetworksHagos, Maarig Aregawi, Mohamed, Marshed January 2012 (has links)
This thesis report presents background knowledge about cognitive radio network (CRN) and investigates performance of underlay cognitive radio networks based on an adaptive power allocation policy of secondary transmitter (SU-Tx). In particular, it has been assumed that SU-Tx and primary user transmitter (PU-Tx) are equipped with a single antenna, while the corresponding receivers are equipped with multiple antennas. Additionally, SU-Tx operates under the joint constraint of its peak transmission power and outage constraint of the primary network. The probability density function (PDF) and cumulative density function (CDF) of the signal to interference and noise ratio (SINR) of SU over Rayleigh fading channel are derived. Using these two functions, a closed-form expression for the outage probability and an approximate expression for ergodic capacity of the considered system are obtained. Matlab simulation results are provided to validate the correctness of the analyses. The results show that simulation and analytical results closely match. The results show that the performance of SU increases as power of PU increases, but behaves the opposite after SU-Tx reaches its peak transmission power. Furthermore, the results reveal that as the number of antennas at the receivers (both SU and PU receivers) increases, the performance of the SU network increases. / maarig2000@gmail.com, marshed18@hotmail.com
|
9 |
Achievable Rate and Capacity of Amplify-and-Forward Multi-Relay Networks with Channel State InformationTran, Tuyen X. 20 September 2013 (has links)
No description available.
|
10 |
Διερεύνηση και βελτιστοποίηση των τεχνικών απόκλισης στα ασυρματικά δίκτυα πολλαπλής εισόδου-πολλαπλής εξόδου MIMO με στόχο την υποστήριξη αξιόπιστων επικοινωνιακών υπηρεσιών / Study and optimization of diversity techniques and MIMO (Multiple Input Multiple Output) systems targeting at reliable communications systemsΒαγενάς, Ευστάθιος 04 October 2011 (has links)
Τα ασύρματα συστήματα τέταρτης γενιάς (4G) στοχεύουν σε πολύ υψηλές ταχύτητες μετάδοσης δεδομένων, 100 Mbps (Mega bits per second) για ταχέως κινούμενους πομποδέκτες και έως 1 Gbps για ακίνητους. Αυτός ο στόχος μπορεί να επιτευχθεί με τα συστήματα Πολλαπλής Εισόδου-Πολλαπλής Εξόδου (Multiple Input-Multiple Output, MIMO) τα οποία χρησιμοποιούν πολλές κεραίες στον πομπό και στο δέκτη. Ο στόχος της παρούσας διδακτορικής διατριβής (ΔΔ) εστιάζεται στην ανάλυση και βελτιστοποίηση αυτών των συστημάτων, υπό το πρίσμα των φαινομένων της σκέδασης και των διαλείψεων μικρής κλίμακας. Το αντικείμενο μελέτης συνοψίζεται στις ακόλουθες θεματικές ενότητες: α) μοντελοποίηση των ασυρμάτων καναλιών με διαλείψεις, β) απόδοση ακριβών και εύχρηστων μαθηματικών εκφράσεων της εργοδικής (μέσου όρου) χωρητικότητας των ασύρματων συστημάτων που χρησιμοποιούν πολλές κεραίες στο δέκτη, γ) αύξηση της εργοδικής χωρητικότητας του συστήματος ΜΙΜΟ χρησιμοποιώντας πληροφορία από το μέσο διάδοσης.
Αρχικά περιγράφεται η γενική μοντελοποίηση του ασύρματου καναλιού που είναι αναγκαία για την κατανόηση βασικών εννοιών για την ανάλυση που θα ακολουθήσει. Αυτό έχει ως στόχο μία σύντομη περιγραφή των βασικών χαρακτηριστικών ενός οποιουδήποτε ασύρματου καναλιού και να γίνουν κατανοητές κάποιες σημαντικές έννοιες που προκύπτουν και χρησιμοποιούνται κατά κόρον στις ασύρματες επικοινωνίες. Πιο συγκεκριμένα, παρατίθενται βασικές θεωρητικές γνώσεις όπου περιγράφονται τα διάφορα προβλήματα διάδοσης, δίνοντας μια σύντομη περιγραφή των φυσικών φαινομένων που εμπλέκονται, χωρίς να εμβαθύνουμε σε πολύπλοκες μαθηματικές σχέσεις.
Στη συνέχεια, γίνεται προσπάθεια ακριβέστερης μοντελοποίησης, με χρήση στοχαστικών διαδικασιών, των ασύρματων μη επιλεκτικών στη συχνότητα καναλιών με διαλείψεις (frequency non-selective fading channels) σε περιβάλλον τρισδιάστατης ανισοτροπικής σκέδασης καναλιού Rice. Με τον όρο ανισοτροπική εννοείται ότι η λήψη των διαφόρων συνιστωσών για το αζιμούθιο επίπεδο γίνεται από κάποιους τομείς γωνιών και όχι από όλες τις κατευθύνσεις, ενώ στο επίπεδο της ανύψωσης θεωρούμε την ύπαρξη ενός τομέα άφιξης των συνιστωσών στον οποίο η ισχύς δεν κατανέμεται ομοιόμορφα αλλά βάσει μιας κατανομής. Επιπλέον λόγω της θεώρησης καναλιού Rice, συμπεριλαμβάνεται η ύπαρξη μιας δεσπόζουσας συνιστώσας με σταθερό πλάτος η οποία συνήθως προέρχεται από οπτική επαφή του πομπού με το δέκτη. Θεωρώντας συγκεκριμένες κατανομές για την άφιξη των συνιστωσών σε αυτούς τους τομείς από τη διεθνή βιβλιογραφία, εξάγεται αναλυτικά η συνάρτηση της αυτοσυσχέτισης και το φάσμα της ολίσθησης των συχνοτήτων σε αναλυτική μορφή και υπολογίζονται σημαντικά μεγέθη που εκφράζουν την ταχύτητα αυξομείωσης του σήματος και τη διάρκεια των διαλείψεων. Επιπλέον με αυτό τον τρόπο είναι δυνατόν να καθοριστεί η απόσταση μεταξύ των κεραιών που πρέπει να τηρείται ώστε να εξασφαλίζονται οι υψηλές επιδόσεις. Σε αστικό περιβάλλον, αποδεικνύεται ότι η ελάχιστη απόσταση μεταξύ των κεραιών ενός πομποδέκτη θα πρέπει να είναι μεγαλύτερη από ότι σε ένα υπαίθριο περιβάλλον.
Στην επόμενη ενότητα επιτυγχάνεται η απόδοση ακριβών και εύχρηστων μαθηματικών εκφράσεων της εργοδικής (μέσου όρου) χωρητικότητας των ασύρματων συστημάτων που χρησιμοποιούν πολλές κεραίες στο δέκτη σε περιβάλλον Nakagami (που θεωρείται από τα πιο αντιπροσωπευτικά για την περιγραφή της ασύρματης διάδοσης σε κλειστούς χώρους) με όσο το δυνατό απλούστερες μαθηματικές συναρτήσεις. Με αυτό τον τρόπο, η ταχύτητα μετάδοσης δεδομένων εκφράζεται συναρτήσει των φυσικών παραμέτρων του συστήματος, δηλαδή το κανάλι, τον αριθμό των κεραιών κτλ. Ήδη έχουν γίνει πολλές δημοσιεύεις σε αυτό τον τομέα για διάφορες περιπτώσεις μοντελοποίησης των καναλιών (Rayleigh, Rice κτλ) και για διάφορες τεχνικές λήψης. Όμως υπάρχουν αρκετές περιπτώσεις όπου υπάρχουν κενά στη διεθνή βιβλιογραφία ή η έκφραση της χωρητικότητας δεν γίνεται με κλειστές μαθηματικές μορφές.
Έτσι παρουσιάζονται αναλυτικές μαθηματικές εκφράσεις της εργοδικής χωρητικότητας των συστημάτων SIMO που δεν υπήρχαν έως τώρα στη διεθνή βιβλιογραφία, για διάφορες περιπτώσεις γνώσης του καναλιού. Αυτό γίνεται κάνοντας τον άμεσο παραλληλισμό των συστημάτων SIMO με τις διάφορες τεχνικές διαφορισμού. Εξετάζεται η εργοδική χωρητικότητα ενός συστήματος SIMO το οποίο λειτουργεί σε κανάλι διαλείψεων Nakagami-m στο οποίο όλες οι ζεύξεις είναι ανεξάρτητες αλλά δεν είναι κατά ανάγκη όμοιες. Συγκεκριμένα εξάγονται μαθηματικές εκφράσεις κλειστού τύπου για την εργοδική χωρητικότητα συστημάτων Equal Gain Combining και Selection Combining και Switch and Stay Combining δύο κλάδων. Επιπλέον, παρουσιάζεται για πρώτη φορά, η εργοδική χωρητικότητα ενός συστήματος SIMO στο οποίο δεν εφαρμόζεται καμία τεχνική διαφορικής λήψης και εξάγονται πολύ διδακτικά συμπεράσματα. Αυτό σημαίνει ότι ο δέκτης δεν έχει καμία πληροφορία για το κανάλι (no channel state information CSI) και απλά προσθέτει τα λαμβανόμενα σήματα από κάθε κλάδο-ζεύξη. Επιπλέον γίνεται προσπάθεια οι μαθηματικοί τύποι να είναι εύχρηστοι και υλοποιήσιμοι χωρίς την χρήση ιδιαίτερων μαθηματικών λογισμικών. Ουσιαστικά η μαθηματική έκφραση της χωρητικότητας των συστημάτων SIMO σε κανάλι διαλείψεων Nakagami-m, ανάγεται στην επίλυση ενός είδους ολοκληρώματος που περιέχει ταυτόχρονα τη λογαριθμική συνάρτηση, την εκθετική συνάρτηση και πολυώνυμα νιοστής δύναμης. Αυτός ο τύπος ολοκληρωμάτων είναι δυσεπίλυτος και προκύπτει συχνά στις ασύρματες επικοινωνίες.
Στην τελευταία ενότητα, γίνεται προσπάθεια αύξησης του μέσου όρου της χωρητικότητας του συστήματος ΜΙΜΟ χρησιμοποιώντας πληροφορία από το μέσο διάδοσης. Πιο συγκεκριμένα μελετάται η πολιτική εκπομπής, αν ο πομπός γνωρίζει τις παραμέτρους του καναλιού οι οποίες είναι δυνατό να γνωστοποιηθούν στον πομπό σε ρεαλιστικό επίπεδο. Ως παράμετροι του καναλιού οι οποίες είναι απαραίτητο να είναι γνωστές, θεωρούνται ο μέσος όρος και η διασπορά του καναλιού που είναι δυνατό να μετρηθούν στην πράξη ιδιαίτερα για κανάλια που δε μεταβάλλονται πάρα πολύ γρήγορα στο χρόνο. Το πρόβλημα της μεγιστοποίησης της εργοδικής χωρητικότητας, στην γενική του μορφή έως τώρα αντιμετωπίζεται μόνο με χρονοβόρες υπολογιστικές μεθόδους που απαιτούν αρκετή υπολογιστική ισχύ, καθιστώντας τη λύση μη εφαρμόσιμη σε πραγματικό χρόνο και επομένως μη ρεαλιστική. Το πρόβλημα είναι δυσεπίλυτο και οι μόνες αναλυτικές λύσεις που υπάρχουν αναφέρονται σε ιδιαίτερες περιπτώσεις. Η παρούσα ΔΔ ασχολείται με τη μεγιστοποίηση της εργοδικής χωρητικότητας του συστήματος MISO (Multiple Input-Single Output) το οποίο χρησιμοποιεί την τεχνική beamforming στην εκπομπή. Το πρόβλημα επιλύεται και η λύση του ανάγεται στη λύση ενός συστήματος δύο εξισώσεων το οποίο λύνεται αριθμητικά. Έτσι είναι δυνατή η μεγιστοποίηση της χωρητικότητας σε πραγματικό χρόνο χωρίς ιδιαίτερη υπολογιστική ισχύ. Έως τώρα η προσέγγιση αυτού του προβλήματος γίνεται αποκλειστικά με αλγορίθμους μεγιστοποίησης μη γραμμικού προγραμματισμού. Επιπλέον εξετάζοντας τη λύση του απλού συστήματος , εξάγονται καθολικά συμπεράσματα που εκφράζουν το γενικό πρόβλημα.
Για τη μεγιστοποίηση του συστήματος MISO beamforming, απαιτήθηκε η διανυσματική ανάλυση του μέσου όρου του καναλιού και του διανύσματος beamforming του πομπού σε μία κατάλληλη ορθοκανονική βάση. Έτσι το πρόβλημα ανάγεται στην εύρεση των γωνιών που σχηματίζει το διάνυσμα beamforming με την ορθοκανονική βάση ώστε να μεγιστοποιείται η χωρητικότητα για δεδομένες παραμέτρους του καναλιού. Με αυτή τη μέθοδο το πρόβλημα επιλύεται πολύ εύκολα με αριθμητικές μεθόδους. Αυτό δίνει, πέρα από την ίδια τη λύση, τη δυνατότητα να γίνει σύγκριση και με υπάρχουσες μεθόδους που προσέγγιζαν τη λύση, όπως η μεγιστοποίηση του σηματοθορυβικού λόγου (Signal to Noise Ratio, SNR). Επίσης αποδεικνύεται ότι το λαμβανόμενο SNR στο δέκτη επηρεάζει το διάνυσμα beamforming που μεγιστοποιεί την χωρητικότητα. Λαμβάνοντας υπόψη όλα αυτά, προτείνεται ένας κανόνας για την πολιτική εκπομπής του πομπού. Η μεθοδολογία που αναπτύχθηκε μπορεί να βοηθήσει σημαντικά στην επίλυση του γενικότερου προβλήματος της μεγιστοποίησης της χωρητικότητας σε συστήματα ΜΙΜΟ. / 4G Wireless Communication Systems aim at high data rates, 100 Mbps (Mega bits per second) for high speed transceivers and up to 1 Gbps for stationary transceivers. This target can be accomplished with Multiple Input Multiple Output (MIMO) Systems which use multiple antennas at both the transmitter and the receiver. The subject of this Philosophy Diploma (PhD) dissertation focuses on analysis and optimization of these systems, taking into account the effects of small scale fading and scattering which occur in a wireless channel. The subject of this study is summarized in the following thematic units: a) Fading channel modelling b) Closed-form mathematical expressions for the ergodic capacity of wireless systems which use multiple antennas at the receiver c) increase MISO ergodic capacity through channel state information.
Initially, the general wireless fading channel model is described which is necessary for the better understanding of the analysis used in this dissertation. This aims at a brief description of the basic characteristics of the wireless channel. Specifically, general theoretical knowledge of propagation channel is presented, giving a description of the phenomena occurring in the channel without presenting complex mathematical expressions.
Next, using stochastic procedures, an accurate model of frequency non-selective Rician fading channel with 3 dimensional anisotropic scattering is presented. The term anisotropic means that the arrival of the multipath components comes from some specific sectors and not from any direction. In the elevation plane, we assume a sector for the arrival of the multipath components in which power does not arrive uniformly but follows a specific distribution. In addition, assuming a communication system operating in a Rice fading channel, a dominant component is included which usually represents the Line of Sight (LOS) component between the transmitter and the receiver. Taking into account international literature and assuming specific probability density functions for the angle of arrivals in these sectors, analytical mathematical expressions of the auto-correlation function and the power spectral density of the received signal are derived. Moreover important measures of the level crossing rate and the average duration of fades are calculated. By this analysis, the system designer is able to estimate the optimal distance between antennas in order to assure high performance of the communication system. It is proved that the distance between antennas should be greater in rural than in urban environments.
In the next section, accurate closed-form mathematical expressions for the ergodic capacity of SIMO (Single Input Multiple Output) systems in Nakagami fading channel are derived with the help of known and easy to use mathematical functions (Nakagami fading is appropriate for indoor channel modelling). Thus channel capacity is expressed with respect to the physical system parameters such as: amount of fading, number of antennas etc. Many studies have been published for different cases of fading channel models (Rayleigh, Rice, etc) and diversity techniques. But for some cases there are no mathematical expressions for the ergodic capacity or it is expressed in a no closed form way.
Thus in this study, new analytical mathematical expressions for the ergodic capacity of SIMO systems with different channel knowledge cases are derived. Also the relation between diversity techniques and SIMO systems is taken into account. We assume that the SIMO system operates in a Nakagami fading channel where each branch is statistically independent but not identically distributed. More precisely, new ergodic capacity formulas for dual Equal Gain Combining, Selection Combining and Switch and Stay Combining techniques are presented. In addition, a new mathematical formula for the ergodic capacity of a SIMO system with no channel knowledge is presented, resulting in useful conclusions. All these mathematical expressions are calculated with mathematical functions that are included in any mathematical software. Essentially, the calculation of the ergodic capacity of SIMO systems in Nakagami fading channels entails the calculation of an integral which contains the logarithmic function, the exponential function and n power polynomials. This type of integral is intractable and arises frequently in wireless communications.
In the last section, the ergodic capacity of a MIMO channel using channel state information is studied. In particular, this dissertation studies the transmit strategy if the transmitter knows the statistical parameters of the channel which is feasible in a realistic scenario. The statistical parameters of the channel that have to be transferred to the transmitter are channel mean and covariance. These parameters can be measured in practice especially for low time variant channels. Transmitter optimization problem, in its general form, is tackled only with hard optimization methods which are not feasible for real time applications due to large processing time. The problem is intractable and the only analytical solutions in literature are referred to special cases. The current dissertation studies the ergodic capacity optimization problem of a MISO (Multiple Input-Single Output) system which uses beamforming as its transmit strategy. The problem is solved through a system of two equations which is solved numerically. Thus the problem is extremely simplified and beamforming capacity optimization is feasible even for real time applications. So far this problem was tackled with non linear programming optimization methods. Also examining the solution for the MISO system, it is provided intuition into the problem. Also general results are presented which express the general problem.
Beamforming capacity optimization solution was achieved by following an analytical approach that projects the beamforming vector on an appropriate orthonormal basis defined by the eigenvectors of the channel covariance matrix. Thus the problem reduces to calculation of the angles between the beamforming vector and the orthonormal basis which maximize capacity for given channel parameters. Following this method, the problem is solved very easily through numerical root finding algorithms. Besides the solution itself, a comparison against existing approximate solutions is possible, e.g. SNR (Signal to Noise Ratio) maximization solution. It is proved that the optimal beamforming vector is dependent on the received SNR. Taking into account all the arising results, a rule of thumb for the transmit policy is proposed. In addition, the used method can help significantly towards the solution of the MIMO transmitter optimization problem.
|
Page generated in 0.0715 seconds