Spelling suggestions: "subject:"erreur journée"" "subject:"erreur tournée""
1 |
Intégration numérique avec erreur bornée en précision arbitraireFousse, Laurent 04 December 2006 (has links) (PDF)
L'intégration numérique est une opération fréquemment disponible et utilisée dans les systèmes de calcul numérique. Nous nous intéressons dans ce mémoire à la maîtrise des erreurs commises lors d'un calcul numérique d'intégrale réelle à une dimension dans le contexte de la précision arbitraire pour les deux méthodes d'intégration que sont Newton-Cotes et Gauss-Legendre. Du point de vue algorithmique nous proposons pour chacune des méthodes une procédure de calcul avec une borne effective sur l'erreur totale commise. Dans le cadre de l'étude de la méthode de Gauss-Legendre nous avons étudié les algorithmes connus de raffinement de racines réelles d'un polynôme (la méthode de la sécante, l'itération de Newton, la dichotomie), et nous en avons proposé des heuristiques explicites permettant de s'assurer en pratique de la convergence. Les algorithmes proposés ont été implémentés dans une bibliothèque d'intégration numérique baptisée «Correctly Rounded Quadrature» (CRQ) disponible à l'adresse http://komite.net/laurent/soft/crq/. Nous comparons CRQ avec d'autres logiciels d'intégration dans ce mémoire.
|
2 |
Synthèse d'observateurs ensemblistes pour l’estimation d’état basées sur la caractérisation explicite des bornes d’erreur d’estimation / Set-membership state observers design based on explicit characterizations of theestimation-error boundsLoukkas, Nassim 06 June 2018 (has links)
Dans ce travail, nous proposons deux nouvelles approches ensemblistes pourl’estimation d’état basées sur la caractérisation explicite des bornes d’erreur d’estimation. Ces approches peuvent être vues comme la combinaison entre un observateur ponctuel et une caractérisation ensembliste de l’erreur d’estimation. L’objectif est de réduire la complexité de leur implémentation, de réduire le temps de calcul en temps réel et d’améliorer la précision et des encadrements des vecteurs d’état.La première approche propose un observateur ensembliste basé sur des ensembles invariants ellipsoïdaux pour des systèmes linéaires à temps-discret et aussi des systèmes à paramètres variables. L’approche proposée fournit un intervalle d’état déterministe qui est construit comme une somme entre le vecteur état estimé du système et les bornes de l’erreur d’estimation. L’avantage de cette approche est qu’elle ne nécessite pas la propagation des ensemble d’état dans le temps.La deuxième approche est une version intervalle de l’observateur d’état de Luenberger, pour les systèmes linéaires incertains à temps-discret, basés sur le calcul d’intervalle et les ensembles invariants. Ici, le problème d’estimation ensembliste est considéré comme un problème d’estimation d’état ponctuel couplé à une caractérisation intervalle de l’erreur d’estimation. / In This work, we propose two main new approaches for the set-membershipstate estimation problem based on explicit characterization of the estimation error bounds. These approaches can be seen as a combination between a punctual observer and a setmembership characterization of the observation error. The objective is to reduce the complexity of the on-line implimentation, reduce the on-line computation time and improve the accuracy of the estimated state enclosure.The first approach is a set-membership observer based on ellipsoidal invariant sets for linear discrete-time systems and also for Linear Parameter Varying systems. The proposed approach provides a deterministic state interval that is build as the sum of the estimated system states and its corresponding estimation error bounds. The important feature of the proposed approach is that does not require propagation of sets.The second approach is an interval version of the Luenberger state observer for uncertain discrete-time linear systems based on interval and invariant set computation. The setmembership state estimation problem is considered as a punctual state estimation issue coupled with an interval characterization of the estimation error.
|
3 |
Surveillance préventive des systèmes hybrides à incertitudes bornées / Preventive monitoring of hybrid systems in a bounded-error frameworkMaÏga, Moussa 02 July 2015 (has links)
Cette thèse est dédiée au développement d’algorithmes génériques pour l’observation ensembliste de l’état continu et du mode discret des systèmes dynamiques hybrides dans le but de réaliser la détection de défauts. Cette thèse est organisée en deux grandes parties. Dans la première partie, nous avons proposé une méthode rapide et efficace pour le passage ensembliste des gardes. Elle consiste à procéder à la bissection dans la seule direction du temps et ensuite faire collaborer plusieurs contracteurs simultanément pour réduire le domaine des vecteurs d’état localisés sur la garde, durant la tranche de temps étudiée. Ensuite, nous avons proposé une méthode pour la fusion des trajectoires basée sur l'utilisation des zonotopes. Ces méthodes, utilisées conjointement, nous ont permis de caractériser de manière garantie l'ensemble des trajectoires d'état hybride engendrées par un système dynamique hybride incertain sur un horizon de temps fini. La deuxième partie de la thèse aborde les méthodes ensemblistes pour l'estimation de paramètres et pour l'estimation d'état hybride (mode et état continu) dans un contexte à erreurs bornées. Nous avons commencé en premier lieu par décrire les méthodes de détection de défauts dans les systèmes hybrides en utilisant une approche paramétrique et une approche observateur hybride. Ensuite, nous avons décrit deux méthodes permettant d’effectuer les tâches de détection de défauts. Nous avons proposé une méthode basée sur notre méthode d'atteignabilité hybride non linéaire et un algorithme de partitionnement que nous avons nommé SIVIA-H pour calculer de manière garantie l'ensemble des paramètres compatibles avec le modèle hybride, les mesures et avec les bornes d’erreurs. Ensuite, pour l'estimation d'état hybride, nous avons proposé une méthode basée sur un prédicteurcorrecteur construit au dessus de notre méthode d'atteignabilité hybride non linéaire. / This thesis is dedicated to the development of generic algorithms for the set-membership observation of the continuous state and the discrete mode of hybrid dynamical systems in order to achieve fault detection. This thesis is organized into two parts. In the first part, we have proposed a fast and effective method for the set-membership guard crossing. It consists in carrying out bisection in the time direction only and then makes several contractors working simultaneously to reduce the domain of state vectors located on the guard during the study time slot. Then, we proposed a method for merging trajectories based on zonotopic enclosures. These methods, used together, allowed us to characterize in a guaranteed way the set of all hybrid state trajectories generated by an uncertain hybrid dynamical system on a finite time horizon. The second part focuses on set-membership methods for the parameters or the hybrid state (mode and continuous state) of a hybrid dynamical system in a bounded error framework. We started first by describing fault detection methods for hybrid systems using the parametric approach and the hybrid observer approach. Then, we have described two methods for performing fault detection tasks. We have proposed a method for computing in a guaranteed way all the parameters consistent with the hybrid dynamical model, the actual data and the prior error bound, by using our nonlinear hybrid reachability method and an algorithm for partition which we denote SIVIA-H. Then, for hybrid state estimation, we have proposed a method based on a predictor-corrector, which is also built on top of our non-linear method for hybrid reachability.
|
Page generated in 0.0374 seconds