Spelling suggestions: "subject:"error rate"" "subject:"arror rate""
141 |
Probability Density Function Estimation Applied to Minimum Bit Error Rate Adaptive FilteringPhillips, Kimberly Ann 28 May 1999 (has links)
It is known that a matched filter is optimal for a signal corrupted by Gaussian noise. In a wireless environment, the received signal may be corrupted by Gaussian noise and a variety of other channel disturbances: cochannel interference, multiple access interference, large and small-scale fading, etc. Adaptive filtering is the usual approach to mitigating this channel distortion. Existing adaptive filtering techniques usually attempt to minimize the mean square error (MSE) of some aspect of the received signal, with respect to the desired aspect of that signal. Adaptive minimization of MSE does not always guarantee minimization of bit error rate (BER). The main focus of this research involves estimation of the probability density function (PDF) of the received signal; this PDF estimate is used to adaptively determine a solution that minimizes BER. To this end, a new adaptive procedure called the Minimum BER Estimation (MBE) algorithm has been developed. MBE shows improvement over the Least Mean Squares (LMS) algorithm for most simulations involving interference and in some multipath situations. Furthermore, the new algorithm is more robust than LMS to changes in algorithm parameters such as stepsize and window width. / Master of Science
|
142 |
Analog and Digital Array Processor Realization of a 2D IIR Beam Filter for Wireless ApplicationsJoshi, Rimesh M. 01 February 2012 (has links)
No description available.
|
143 |
The Effectiveness Of Data Codes And Hardware Selection To Mitigate Scintillation Effects On Free Space Optical Data TransmissionStein, Keith 01 January 2006 (has links)
The design of an optical communication link must plan for the random effects of atmospheric turbulence. This study analyses data from an experiment which transmitted from a laser located 8 meters above ground over a 13 Km range to coherent detection devices approximately 162 meters above ground. The effects of a fading and surging beam wave were considered in regards to code techniques for error correction, amplitude modulation and hardware architecture schemes. This study simulated the use of arrays and large apertures for the receiving devices, and compared the resultant scintillation index with the theoretical calculations.
|
144 |
Attitudes Toward Holistic and Mechanical Judgment in Employee Selection: Role of Error Rate and False Positive and False Negative ErrorYankelevich, Maya 23 April 2010 (has links)
No description available.
|
145 |
Exploiting BioPortal as Background Knowledge in Ontology AlignmentChen, Xi 11 August 2014 (has links)
No description available.
|
146 |
Novel Step-Down Multiple Testing Procedures Under DependenceLu, Shihai 01 December 2014 (has links)
No description available.
|
147 |
Ambient Backscatter Communication Systems: Design, Signal Detection and Bit Error Rate AnalysisDevineni, Jaya Kartheek 21 September 2021 (has links)
The success of the Internet-of-Things (IoT) paradigm relies on, among other things, developing energy-efficient communication techniques that can enable information exchange among billions of battery-operated IoT devices. With its technological capability of simultaneous information and energy transfer, ambient backscatter is quickly emerging as an appealing solution for this communication paradigm, especially for the links with low data rate requirements. However, many challenges and limitations of ambient backscatter have to be overcome for widespread adoption of the technology in future wireless networks. Motivated by this, we study the design and implementation of ambient backscatter systems, including non-coherent detection and encoding schemes, and investigate techniques such as multiple antenna interference cancellation and frequency-shift backscatter to improve the bit error rate performance of the designed ambient backscatter systems.
First, the problem of coherent and semi-coherent ambient backscatter is investigated by evaluating the exact bit error rate (BER) of the system. The test statistic used for the signal detection is based on the averaging of energy of the received signal samples. It is important to highlight that the conditional distributions of this test statistic are derived using the central limit theorem (CLT) approximation in the literature. The characterization of the exact conditional distributions of the test statistic as non-central chi-squared random variable for the binary hypothesis testing problem is first handled in our study, which is a key contribution of this particular work. The evaluation of the maximum likelihood (ML) detection threshold is also explored which is found to be intractable. To overcome this, alternate strategies to approximate the ML threshold are proposed. In addition, several insights for system design and implementation are provided both from analytical and numerical standpoints.
Second, the highly appealing non-coherent signal detection is explored in the context of ambient backscatter for a time-selective channel. Modeling the time-selective fading as a first-order autoregressive (AR) process, we implement a new detection architecture at the receiver based on the direct averaging of the received signal samples, which departs significantly from the energy averaging-based receivers considered in the literature. For the proposed setup, we characterize the exact asymptotic BER for both single-antenna (SA) and multi-antenna (MA) receivers, and demonstrate the robustness of the new architecture to timing errors. Our results demonstrate that the direct-link (DL) interference from the ambient power source leads to a BER floor in the SA receiver, which the MA receiver can avoid by estimating the angle of arrival (AoA) of the DL. The analysis further quantifies the effect of improved angular resolution on the BER as a function of the number of receive antennas.
Third, the advantages of utilizing Manchester encoding for the data transmission in the context of non-coherent ambient backscatter have been explored. Specifically, encoding is shown to simplify the detection procedure at the receiver since the optimal decision rule is found to be independent of the system parameters. Through extensive numerical results, it is further shown that a backscatter system with Manchester encoding can achieve a signal-to-noise ratio (SNR) gain compared to the commonly used uncoded direct on-off keying (OOK) modulation, when used in conjunction with a multi-antenna receiver employing the direct-link cancellation.
Fourth, the BER performance of frequency-shift ambient backscatter, which achieves the self-interference mitigation by spatially separating the reflected backscatter signal from the impending source signal, is investigated. The performance of the system is evaluated for a non-coherent receiver under slow fading in two different network setups: 1) a single interfering link coming from the ambient transmission occurring in the shifted frequency region, and 2) a large-scale network with multiple interfering signals coming from the backscatter nodes and ambient source devices transmitting in the band of interest. Modeling the interfering devices as a two dimensional Poisson point process (PPP), tools from stochastic geometry are utilized to evaluate the bit error rate for the large-scale network setup. / Doctor of Philosophy / The emerging paradigm of Internet-of-Things (IoT) has the capability of radically transforming the human experience. At the heart of this technology are the smart edge devices that will monitor everyday physical processes, communicate regularly with the other nodes in the network chain, and automatically take appropriate actions when necessary. Naturally, many challenges need to be tackled in order to realize the true potential of this technology. Most relevant to this dissertation are the problems of powering potentially billions of such devices and enabling low-power communication among them.
Ambient backscatter has emerged as a useful technology to handle the aforementioned challenges of the IoT networks due to its capability to support the simultaneous transfer of information and energy. This technology allows devices to harvest energy from the ambient signals in the environment thereby making them self-sustainable, and in addition provide carrier signals for information exchange. Using these attributes of ambient backscatter, the devices can operate at very low power which is an important feature when considering the reliability requirements of the IoT networks. That said, the ambient backscatter technology needs to overcome many challenges before its widespread adoption in IoT networks. For example, the range of backscatter is limited in comparison to the conventional communication systems due to self-interference from the power source at a receiver. In addition, the probability of detecting the data in error at the receiver, characterized by the bit error rate (BER) metric, in the presence of wireless multipath is generally poor in ambient backscatter due to double path loss and fading effects observed for the backscatter link. Inspired by this, the aim of this dissertation is to come up with new architecture designs for the transmitter and receiver devices that can improve the BER performance. The key contributions of the dissertation include the analytical derivations of BER which provide insights on the system design and the main parameters impacting the system performance.
The exact design of the optimal detection technique for a communication system is dependent on the channel behavior, mainly the time-varying nature in the case of a flat fading channel. Depending on the mobility of devices and scatterers present in the wireless channel, it can either be described as time-selective or time-nonselective. In the time-nonselective channels, coherent detection that requires channel state information (CSI) estimation using pilot signals can be implemented for ambient backscatter. On the other hand, non-coherent detection is preferred when the channel is time-selective since the CSI estimation is not feasible in such scenarios. In the first part of this dissertation, we analyze the performance of ambient backscatter in a point-to-point single-link system for both time-nonselective and time-selective channels. In particular, we determine the BER performance of coherent and non-coherent detection techniques for ambient backscatter systems in this line of work. In addition, we investigate the possibility of improving the BER performance using multi-antenna and coding techniques. Our analyses demonstrate that the use of multi-antenna and coding can result in tremendous improvement of the performance and simplification of the detection procedure, respectively. In the second part of the dissertation, we study the performance of ambient backscatter in a large-scale network and compare it to that of the point-to-point single-link system. By leveraging tools from stochastic geometry, we analytically characterize the BER performance of ambient backscatter in a field of interfering devices modeled as a Poisson point process.
|
148 |
Chybovost v překladech právních textů do češtiny publikovaných v Úředním věstníku Evropské unie / The Rate of Translations Errors in Czech Legal Texts Published in the Official Journal of the European UnionTomíčková, Kateřina January 2019 (has links)
This thesis investigates the rate of translation errors in Czech legal texts published in the Official Journal of the European Union using automated quality assurance tools. In the theoretical part, the aim of the thesis-to determine the error rate of analyzed text-is set, and individual hypotheses are defined. Subsequently, individual reasons which make translation for the EU institutions specific and why it is a separate subcategory within legal translation are listed. The method used to achieve the set objective and to confirm or disprove proposed hypotheses is described as well as the corpus which has been created for the analysis is presented. The corpus is comprised of legally binding texts- regulations, directives, and decisions published in the Official Journal of the European Union between 2004 and 2018. In the theoretical part, a definition of an error established for the purpose of this thesis is also provided. The definition was created based on QA tools options and a comparative analysis of different metrics used to evaluate the error rate in translation. The empirical part focuses on the research itself and discuss various issues encountered. The results of the analysis-whether the hypotheses have been proven-are then presented, and future research is outlined.
|
149 |
Experimental multiuser secure quantum communicationsBogdanski, Jan January 2009 (has links)
We are currently experiencing a rapid development of quantum information, a new branch of science, being an interdisciplinary of quantum physics, information theory, telecommunications, computer science, and many others. This new science branch was born in the middle of the eighties, developed rapidly during the nineties, and in the current decade has brought a technological breakthrough in creating secure quantum key distribution (QKD), quantum secret sharing, and exciting promises in diverse technological fields. Recent QKD experiments have achieved high rate QKD at 200 km distance in optical fiber. Significant QKD results have also been achieved in free-space. Due to the rapid broadband access deployment in many industrialized countries and the standing increasing transmission security treats, the natural development awaiting quantum communications, being a part of quantum information, is its migration into commercial switched telecom networks. Such a migration concerns both multiuser quantum key distribution and multiparty quantum secret sharing that have been the main goal of my PhD studies. They are also the main concern of the thesis. Our research efforts in multiuser QKD has led to a development of the five-user setup for transmissions over switched fiber networks in a star and in a tree configuration. We have achieved longer secure quantum information distances and implemented more nodes than other multi-user QKD experiments. The measurements have shown feasibility of multiuser QKD over switched fiber networks, using standard fiber telecom components. Since circular architecture networks are important parts of both intranets and the Internet, Sagnac QKD has also been a subject of our research efforts. The published experiments in this area have been very few and results were not encouraging, mainly due to the single mode fiber (SMF) birefringence. Our research has led to a development of a computer controlled birefringence compensation in Sagnac that open the door to both classical and quantum Sagnac applications. On the quantum secret sharing side, we have achieved the first quantum secret sharing experiment over telecom fiber in a five-party implementation using the "plug & play" setup and in a four-party implementation using Sagnac configuration. The setup measurements have shown feasibility and scalability of multiparty quantum communication over commercial telecom fiber networks.
|
150 |
Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA SystemsMirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span.
This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity.
The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain.
Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.
|
Page generated in 0.0361 seconds