• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Das Konzept des effektiven Indenters für die Ermittlung des Elastizitätsmoduls und der Fließgrenze dünner Schichten

Herrmann, Matthias 01 July 2010 (has links) (PDF)
Nanoindentations-Messungen haben in den letzten Jahrzehnten als Verfahren zur Ermittlung mechanischer Eigenschaften dünner Schichten stark an Bedeutung gewonnen. Für die Gewinnung eines tiefergreifenden Verständnisses des mechanischen Verhaltens dieser Schichten ist die Kenntnis des Elastizitätsmoduls und der Fließgrenze von essentieller Bedeutung – nicht zuletzt, da diese auch als Eingabeparameter für Simulationen des Materialverhaltens gefordert sind. Eine noch nicht im Detail verstandene Forschungsfrage bei der Kennwertermittlung ist die Berücksichtigung des Dünnschichtcharakters der Proben, deretwegen diese Untersuchungen im Wesentlichen immer noch einen Grundlagencharakter tragen und derzeit Gegenstand intensiver weltweiter Forschung sind. Auswege für eine solche Berücksichtigung existieren bisher nur für wenige Anwendungsfälle. Das Konzept des effektiven Indenters stellt eine Erweiterung der Auswerteansätze und damit neue Möglichkeit für die mechanische Charakterisierung der Dünnschichteigenschaften dar. In der vorliegenden Arbeit wird untersucht, inwieweit dieses Konzept zur Ermittlung des Elastizitätsmoduls dünner Schichten geeignet ist. Ebenso werden die Untersuchungen auf die Fließgrenze ausgeweitet. Beispielhaft kommen unterschiedliche Schichtmaterialien zum Einsatz, mit denen der Unterschied zwischen den Schicht-Substrat-Eigenschaften – Elastizitätsmodul und Fließgrenze – variiert werden kann. Durch Vergleich der für die BERKOVICH-Eindrücke erhaltenen Ergebnisse zu den mittels der Kugeleindrucksversuche bestimmten Werte – als etabliertes Messverfahren – wird festgestellt, dass o. g. Konzept prinzipiell für die oben angeführten Fragestellungen geeignet ist, insofern die erreichten Eindringtiefen im Vergleich zur Schichtdicke relativ gering sind. Physikalische Ursachen für dieses Verhalten werden vorgeschlagen und diskutiert. Ebenso wird eine spezielle Vorgehensweise des Konzepts des effektiven Indenters für die Charakterisierung von porösen sowie nichtporösen Low-k-Schichtmaterialien untersucht. Zusätzlich werden Finite-Elemente-Simulationen für grundlegende Betrachtungen zur Wirkungsweise des o. g. Konzepts anhand von massiven Proben herangezogen. / Considerable research effort has focused on measuring the mechanical properties of thin films via nanoindentation. To characterize the mechanical behavior of thin films, accurate determination of Young’s modulus and yield strength is required. For the purpose of modeling and dimensioning, these quantities serve as input parameters as well. An existing major challenge in the context of (nanoindentation) data analysis is the complete consideration of the layered structure of the specimen. In the literature, a few experimental and theoretical-based approaches have been developed to extract actual film properties. However, those approaches are only applicable under specific conditions and, hence, the problem is not satisfyingly solved to date. Therewith, investigations of accurately assessing mechanical properties of thin films, in general, or Young’s modulus and yield strength, in detail, are still part of ongoing research in the field of mechanical testing in materials research and development. The concept of the “effective indenter” is an extension of the current and established analysis of nanoindentation data and is a new possibility to determine mechanical properties of thin films. In this work, an investigation is given concerning the suitability of the model, in a specific approximation, for determining Young’s modulus of thin films. In a second step, the investigations are focused on the determination of yield strength. Film/substrate composites having a varying ratio of modulus and yield strength between film and substrate are chosen; BERKOVICH indentations are analyzed and spherical indentation experiments are used as second and independent technique. It is shown that the model is suitable to deliver Young’s modulus of thin films. However, a critical ratio of indentation depth to film thickness is identified; for ratios above this critical value, the model, in the present approximation, can no longer be used. Physical mechanisms that explain this finding are suggested and discussed. Moreover, the above-mentioned model is used to characterize the very specific class of materials of non-porous and porous low-k dielectric thin films in terms of yield strength and Young’s modulus. Finally, finite element modeling is used to study critical issues in applying the model of the “effective indenter” and its specific approximation used here for analysis of nanoindentation data for bulk materials.
2

Bewertung von Verfahren zur Fließspannungsbestimmung in der Nanoindentation

Clausner, André 25 November 2013 (has links) (PDF)
Die Nanoindentation ist ein inzwischen etabliertes Verfahren zur Bestimmung der Materialkennwerte Härte und Elastizitätsmodul in kleinen Größendimensionen. Eine zusätzliche Bestimmung der Fließspannung aus solchen Nanoindentationsexperimenten würde deren Einsatzmöglichkeiten deutlich erweitern und zum Beispiel für die Bauteilauslegung kleiner Strukturen, Schichtcharakterisierung und die Beschaffung von Simulationseingangsdaten einen großen Fortschritt bedeuten. Diese Gründe machen das Thema zu einem aktuellen Forschungsgegenstand. In der vorliegenden Arbeit steht deswegen die Bewertung von Fließspannungsbestimmungsverfahren für Massivmaterialien in der Nanoindentation mittels einer Kombination aus Finite-Elemente-Simulationen und umfangreichen Experimentaldaten im Zentrum. Im Speziellen wird dabei das Konzept des effektiv geformten Indenters mit dem erweiterten Hertzschen Ansatz und dessen Anwendung zur Fließspannungsbestimmung aus Eindringversuchen mit selbstähnlichen Berkovichpyramiden betrachtet. Zur Bearbeitung dieser Aufgabenstellung wurden unter anderem drei Referenzverfahren zur Fließspannungsbestimmung (die Expanding cavity-Modelle, das Loading partial unloading-Verfahren und Minidruckversuche) ausführlich charakterisiert. Damit konnten dann im Weiteren belastbare Referenzfließspannungen für die umfangreiche Experimentaldatenbasis zur Verfügung gestellt werden. Außerdem wurden die untersuchten Materialien auf den Einfluss der Größenabhängigkeit der Fließspannungen, den Indentation size effect, hin untersucht. Dabei wurden die vorliegenden physikalischen Vorgänge in den Proben beschrieben, dahingehende Unterschiede bei den betrachteten Referenzverfahren charakterisiert und den Fließspannungswerten die Fließzonendimensionen zugeordnet. Mit den damit zur Verfügung stehenden Informationen konnte das Konzept des effektiv geformten Indenters in seiner Anwendung zur Fließspannungsbestimmung grundlegend bewertet werden. Alle Untersuchungen wurden dabei stets parallel mit Hilfe von Simulations- und Experimentaldaten durchgeführt, um tiefere Einblicke in die zu Grunde liegende Mechanik der Fließprozesse zu gewinnen.
3

Investigations of nanoindentation data obtained by the combination of normal and mixed (normal and lateral) forces

Molnár, Olena 26 April 2010 (has links) (PDF)
Mechanische Eigenschaften, wie z.B. der Elastizitätsmodul oder die Fließspannung, sind wichtige Materialgrößen, um ein Material zu charakterisieren. Dies kann beispielsweise dazu dienen, ein Bauelement eines MEMS unter Berücksichtigung seiner Funktion zu optimieren. Daher ist es nötig, eine Messmethode zur Verfügung zu haben, die diese Größen auch in kleinen Dimensionen korrekt bestimmen kann, insbesondere auch in dünnen Schichten. Deshalb wurde ein eigenes Konzept basierend auf der Kombination von elastischer Modellierung und Nanoindentationsexperimenten in unserer Arbeitsgruppe entwickelt. Dieses Konzept beruht auf der Theorie der sphärischen Indentation in geschichtete Materialien (Image Load Method). In einem nächsten Schritt wurde dieser theoretische Ansatz erweitert, indem das Modell eines effektiven Indentors mittels des Erweiterten Hertzschen Ansatzes in das ursprüngliche Modell implentiert wurde. Zur gleichen Zeit wurden neue experimentelle Möglichkeiten entwickelt, die auf der Applikation einer definierten Lateralkraft in einem Indentationsexperiment beruhen. Bei der Auswertung dieser neuen experimentellen Methoden stellte sich heraus, dass die auf dem theoretischen Modell basierenden Fittingprozeduren einen subjektiven Faktor aufweisen, sodass je nach Nutzer der Auswertesoftware unterschiedliche Ergebnisse erhalten werden. Der Einfluss intrinsischer Spannungen auf Indentationsexperimente wurde ebenfalls bisher noch nicht systematisch untersucht. Daher ist es die Aufgabe dieser Arbeit, ebendiese offenen Fragen zu beantworten und die Methode der Nanoindentation weiter zu optimieren, um dieser Messmethode neue Anwendungsgebiete zu eröffnen. Die Untersuchungen zum Einfluss der intrinsischen Spannung auf die experimentell erhaltenen mechanischen Eigenschaften einer dünnen Schicht beinhalten ein Modellexperiment mit einer Formgedächtnislegierung (NiTinol), in welcher mittels einer eigens konstruierten Biegevorrichtung definierte biaxiale Spannungszustände eingestellt werden können. Dabei konnte gezeigt werden, dass die Berechnung des Von- Mises-Spannungsfeldes mit dem Wert der intrinsischen Spannung korrigiert werden kann, so dass das erhaltene Maximum der Von-Mises-Spannung dem tatsächlichen Wert der Fließspannung des Materials entspricht. In der vorliegenden Arbeit werden des Weiteren detaillierte Untersuchungen der Entlastungskurven von Referenzmaterialien (BK7-Glas) und geschichteten Materialien (CrN Schicht auf Si) durchgeführt, die auf Berkovich- Indentationsmessungen beruhen. Dabei wurde insbesondere die Auswerteroutine basierend auf dem Konzept des effektiven Indentors dahingehend weiterentwickelt, dass der bisherige subjektive Einfluss erheblich reduziert werden konnte. Diese generell anwendbare Auswerteroutine (d0-Fit) zeichnet sich vor allem durch ein hohes Maß an Nachvollziehbarkeit und Reproduzierbarkeit aus. Mit der gleichzeitigen Anwendung einer Normal- und einer Lateralkraft in einem Indentationsexperiment mit einem spitzen Indentor (Berkovich) ist es möglich, weitere Informationen über die mechanischen Eigenschaften der untersuchten Probe zu gewinnen. Dabei wurde eine kritische Lateralkraft gefunden, die der kritischen Normalkraft einer partiellen Be- und Entlastung mit sphärischen Indentoren analog ist. Hierbei konnte die Möglichkeiten sowie Grenzen demonstriert werden, die das Modell des effektiven Indentors mit dem erweiterten Hertzschen Ansatzes bei der Auswertung der erhalten Messkurven bereitstellt. Diese Untersuchungen mit den bereits erwähnten Referenzmaterialien haben den Charakter eines empirischen Ansatzes. / Mechanical parameters, such as Young’s modulus or yield strength, are important material properties to characterize a material. These parameters can be used to optimize a construction unit of a MEMS with respect to its function for example. Therefore a measurement technique is needed that allows the determination of such mechanical properties even at very small length scales and especially in thin films. To assess the mechanical properties at small length scales and/or layered structures an experimental approach based on nanoindentation measurements and corresponding elastic modeling was developed within our working group. This approach uses the elastic theory of spherical indentation in layered structures based on a potential theory (Image Load Method). In a next step this theoretical approach was extended with implementation of the concept of the effectively shape indenter employing an extended Hertzian approach. At the same time new experimental techniques were developed opening the possibility to apply well defined lateral loads to nanoindentation experiments accompanied with precise measurement of the lateral loads and displacements. The theoretical model bases on fitting procedures of the experimentally obtained curves. During the evaluation of this new experimental nanoindentation approach a subjective factor within the fitting procedures was found, so that depending on the user different results can be derived. Furthermore the influence of intrinsic stresses on the nanoindentation data was not investigated systematically so far. The task of this work is therefore the answering of these open questions and to optimize the method of nanoindentation to open new application possibilities for this new nanoindentation approach. The investigations of the influence of the intrinsic stress on experimentally obtained mechanical properties of a thin film bases on a model experiment with a shape memory alloy (NiTinol). With the help of special designed bending device biaxial stress state can be induced in this material. It was shown that the calculation of the von Mises stress field can be corrected with the value of the intrinsic stress so that the obtained maximum of the von Mises stress corresponds to the yield strength of the material. Moreover it was shown that the onset of phase transformation from austenite to martensite under indentation loads corresponds to the von Mises stress criterion. In the present work detailed analysis of the unloading curves obtained with Berkovich nanoindentation on reference materials (BK7 borosilicate glass) and layered materials (CrN on Si substrate) was performed. The evaluation procedure was refined with respect to the subjective factor. The found procedure (d0-fit) is applicable in a general way and is characterized by a high degree of traceability and reproducibility. Using mixed loading conditions with a normal and a lateral load application at the same time with a sharp indenter (Berkovich) further information on the mechanical characteristics of a material can be derived. A critical lateral force (CLF) was found which is analogous to the critical normal force in loading-partial unloading indentation with spherical indenters. During this investigation the possibilities as well as the limitations of the theoretical model based on the effectively shaped indenter together with the extended Hertzian approach for the analysis of experimentally obtain unloading curves was shown. It should be noted that these investigations with reference materials have empirical character.
4

Investigations of nanoindentation data obtained by the combination of normal and mixed (normal and lateral) forces

Molnár, Olena 16 April 2010 (has links)
Mechanische Eigenschaften, wie z.B. der Elastizitätsmodul oder die Fließspannung, sind wichtige Materialgrößen, um ein Material zu charakterisieren. Dies kann beispielsweise dazu dienen, ein Bauelement eines MEMS unter Berücksichtigung seiner Funktion zu optimieren. Daher ist es nötig, eine Messmethode zur Verfügung zu haben, die diese Größen auch in kleinen Dimensionen korrekt bestimmen kann, insbesondere auch in dünnen Schichten. Deshalb wurde ein eigenes Konzept basierend auf der Kombination von elastischer Modellierung und Nanoindentationsexperimenten in unserer Arbeitsgruppe entwickelt. Dieses Konzept beruht auf der Theorie der sphärischen Indentation in geschichtete Materialien (Image Load Method). In einem nächsten Schritt wurde dieser theoretische Ansatz erweitert, indem das Modell eines effektiven Indentors mittels des Erweiterten Hertzschen Ansatzes in das ursprüngliche Modell implentiert wurde. Zur gleichen Zeit wurden neue experimentelle Möglichkeiten entwickelt, die auf der Applikation einer definierten Lateralkraft in einem Indentationsexperiment beruhen. Bei der Auswertung dieser neuen experimentellen Methoden stellte sich heraus, dass die auf dem theoretischen Modell basierenden Fittingprozeduren einen subjektiven Faktor aufweisen, sodass je nach Nutzer der Auswertesoftware unterschiedliche Ergebnisse erhalten werden. Der Einfluss intrinsischer Spannungen auf Indentationsexperimente wurde ebenfalls bisher noch nicht systematisch untersucht. Daher ist es die Aufgabe dieser Arbeit, ebendiese offenen Fragen zu beantworten und die Methode der Nanoindentation weiter zu optimieren, um dieser Messmethode neue Anwendungsgebiete zu eröffnen. Die Untersuchungen zum Einfluss der intrinsischen Spannung auf die experimentell erhaltenen mechanischen Eigenschaften einer dünnen Schicht beinhalten ein Modellexperiment mit einer Formgedächtnislegierung (NiTinol), in welcher mittels einer eigens konstruierten Biegevorrichtung definierte biaxiale Spannungszustände eingestellt werden können. Dabei konnte gezeigt werden, dass die Berechnung des Von- Mises-Spannungsfeldes mit dem Wert der intrinsischen Spannung korrigiert werden kann, so dass das erhaltene Maximum der Von-Mises-Spannung dem tatsächlichen Wert der Fließspannung des Materials entspricht. In der vorliegenden Arbeit werden des Weiteren detaillierte Untersuchungen der Entlastungskurven von Referenzmaterialien (BK7-Glas) und geschichteten Materialien (CrN Schicht auf Si) durchgeführt, die auf Berkovich- Indentationsmessungen beruhen. Dabei wurde insbesondere die Auswerteroutine basierend auf dem Konzept des effektiven Indentors dahingehend weiterentwickelt, dass der bisherige subjektive Einfluss erheblich reduziert werden konnte. Diese generell anwendbare Auswerteroutine (d0-Fit) zeichnet sich vor allem durch ein hohes Maß an Nachvollziehbarkeit und Reproduzierbarkeit aus. Mit der gleichzeitigen Anwendung einer Normal- und einer Lateralkraft in einem Indentationsexperiment mit einem spitzen Indentor (Berkovich) ist es möglich, weitere Informationen über die mechanischen Eigenschaften der untersuchten Probe zu gewinnen. Dabei wurde eine kritische Lateralkraft gefunden, die der kritischen Normalkraft einer partiellen Be- und Entlastung mit sphärischen Indentoren analog ist. Hierbei konnte die Möglichkeiten sowie Grenzen demonstriert werden, die das Modell des effektiven Indentors mit dem erweiterten Hertzschen Ansatzes bei der Auswertung der erhalten Messkurven bereitstellt. Diese Untersuchungen mit den bereits erwähnten Referenzmaterialien haben den Charakter eines empirischen Ansatzes. / Mechanical parameters, such as Young’s modulus or yield strength, are important material properties to characterize a material. These parameters can be used to optimize a construction unit of a MEMS with respect to its function for example. Therefore a measurement technique is needed that allows the determination of such mechanical properties even at very small length scales and especially in thin films. To assess the mechanical properties at small length scales and/or layered structures an experimental approach based on nanoindentation measurements and corresponding elastic modeling was developed within our working group. This approach uses the elastic theory of spherical indentation in layered structures based on a potential theory (Image Load Method). In a next step this theoretical approach was extended with implementation of the concept of the effectively shape indenter employing an extended Hertzian approach. At the same time new experimental techniques were developed opening the possibility to apply well defined lateral loads to nanoindentation experiments accompanied with precise measurement of the lateral loads and displacements. The theoretical model bases on fitting procedures of the experimentally obtained curves. During the evaluation of this new experimental nanoindentation approach a subjective factor within the fitting procedures was found, so that depending on the user different results can be derived. Furthermore the influence of intrinsic stresses on the nanoindentation data was not investigated systematically so far. The task of this work is therefore the answering of these open questions and to optimize the method of nanoindentation to open new application possibilities for this new nanoindentation approach. The investigations of the influence of the intrinsic stress on experimentally obtained mechanical properties of a thin film bases on a model experiment with a shape memory alloy (NiTinol). With the help of special designed bending device biaxial stress state can be induced in this material. It was shown that the calculation of the von Mises stress field can be corrected with the value of the intrinsic stress so that the obtained maximum of the von Mises stress corresponds to the yield strength of the material. Moreover it was shown that the onset of phase transformation from austenite to martensite under indentation loads corresponds to the von Mises stress criterion. In the present work detailed analysis of the unloading curves obtained with Berkovich nanoindentation on reference materials (BK7 borosilicate glass) and layered materials (CrN on Si substrate) was performed. The evaluation procedure was refined with respect to the subjective factor. The found procedure (d0-fit) is applicable in a general way and is characterized by a high degree of traceability and reproducibility. Using mixed loading conditions with a normal and a lateral load application at the same time with a sharp indenter (Berkovich) further information on the mechanical characteristics of a material can be derived. A critical lateral force (CLF) was found which is analogous to the critical normal force in loading-partial unloading indentation with spherical indenters. During this investigation the possibilities as well as the limitations of the theoretical model based on the effectively shaped indenter together with the extended Hertzian approach for the analysis of experimentally obtain unloading curves was shown. It should be noted that these investigations with reference materials have empirical character.
5

Das Konzept des effektiven Indenters für die Ermittlung des Elastizitätsmoduls und der Fließgrenze dünner Schichten

Herrmann, Matthias 27 May 2010 (has links)
Nanoindentations-Messungen haben in den letzten Jahrzehnten als Verfahren zur Ermittlung mechanischer Eigenschaften dünner Schichten stark an Bedeutung gewonnen. Für die Gewinnung eines tiefergreifenden Verständnisses des mechanischen Verhaltens dieser Schichten ist die Kenntnis des Elastizitätsmoduls und der Fließgrenze von essentieller Bedeutung – nicht zuletzt, da diese auch als Eingabeparameter für Simulationen des Materialverhaltens gefordert sind. Eine noch nicht im Detail verstandene Forschungsfrage bei der Kennwertermittlung ist die Berücksichtigung des Dünnschichtcharakters der Proben, deretwegen diese Untersuchungen im Wesentlichen immer noch einen Grundlagencharakter tragen und derzeit Gegenstand intensiver weltweiter Forschung sind. Auswege für eine solche Berücksichtigung existieren bisher nur für wenige Anwendungsfälle. Das Konzept des effektiven Indenters stellt eine Erweiterung der Auswerteansätze und damit neue Möglichkeit für die mechanische Charakterisierung der Dünnschichteigenschaften dar. In der vorliegenden Arbeit wird untersucht, inwieweit dieses Konzept zur Ermittlung des Elastizitätsmoduls dünner Schichten geeignet ist. Ebenso werden die Untersuchungen auf die Fließgrenze ausgeweitet. Beispielhaft kommen unterschiedliche Schichtmaterialien zum Einsatz, mit denen der Unterschied zwischen den Schicht-Substrat-Eigenschaften – Elastizitätsmodul und Fließgrenze – variiert werden kann. Durch Vergleich der für die BERKOVICH-Eindrücke erhaltenen Ergebnisse zu den mittels der Kugeleindrucksversuche bestimmten Werte – als etabliertes Messverfahren – wird festgestellt, dass o. g. Konzept prinzipiell für die oben angeführten Fragestellungen geeignet ist, insofern die erreichten Eindringtiefen im Vergleich zur Schichtdicke relativ gering sind. Physikalische Ursachen für dieses Verhalten werden vorgeschlagen und diskutiert. Ebenso wird eine spezielle Vorgehensweise des Konzepts des effektiven Indenters für die Charakterisierung von porösen sowie nichtporösen Low-k-Schichtmaterialien untersucht. Zusätzlich werden Finite-Elemente-Simulationen für grundlegende Betrachtungen zur Wirkungsweise des o. g. Konzepts anhand von massiven Proben herangezogen. / Considerable research effort has focused on measuring the mechanical properties of thin films via nanoindentation. To characterize the mechanical behavior of thin films, accurate determination of Young’s modulus and yield strength is required. For the purpose of modeling and dimensioning, these quantities serve as input parameters as well. An existing major challenge in the context of (nanoindentation) data analysis is the complete consideration of the layered structure of the specimen. In the literature, a few experimental and theoretical-based approaches have been developed to extract actual film properties. However, those approaches are only applicable under specific conditions and, hence, the problem is not satisfyingly solved to date. Therewith, investigations of accurately assessing mechanical properties of thin films, in general, or Young’s modulus and yield strength, in detail, are still part of ongoing research in the field of mechanical testing in materials research and development. The concept of the “effective indenter” is an extension of the current and established analysis of nanoindentation data and is a new possibility to determine mechanical properties of thin films. In this work, an investigation is given concerning the suitability of the model, in a specific approximation, for determining Young’s modulus of thin films. In a second step, the investigations are focused on the determination of yield strength. Film/substrate composites having a varying ratio of modulus and yield strength between film and substrate are chosen; BERKOVICH indentations are analyzed and spherical indentation experiments are used as second and independent technique. It is shown that the model is suitable to deliver Young’s modulus of thin films. However, a critical ratio of indentation depth to film thickness is identified; for ratios above this critical value, the model, in the present approximation, can no longer be used. Physical mechanisms that explain this finding are suggested and discussed. Moreover, the above-mentioned model is used to characterize the very specific class of materials of non-porous and porous low-k dielectric thin films in terms of yield strength and Young’s modulus. Finally, finite element modeling is used to study critical issues in applying the model of the “effective indenter” and its specific approximation used here for analysis of nanoindentation data for bulk materials.
6

Bewertung von Verfahren zur Fließspannungsbestimmung in der Nanoindentation

Clausner, André 17 September 2013 (has links)
Die Nanoindentation ist ein inzwischen etabliertes Verfahren zur Bestimmung der Materialkennwerte Härte und Elastizitätsmodul in kleinen Größendimensionen. Eine zusätzliche Bestimmung der Fließspannung aus solchen Nanoindentationsexperimenten würde deren Einsatzmöglichkeiten deutlich erweitern und zum Beispiel für die Bauteilauslegung kleiner Strukturen, Schichtcharakterisierung und die Beschaffung von Simulationseingangsdaten einen großen Fortschritt bedeuten. Diese Gründe machen das Thema zu einem aktuellen Forschungsgegenstand. In der vorliegenden Arbeit steht deswegen die Bewertung von Fließspannungsbestimmungsverfahren für Massivmaterialien in der Nanoindentation mittels einer Kombination aus Finite-Elemente-Simulationen und umfangreichen Experimentaldaten im Zentrum. Im Speziellen wird dabei das Konzept des effektiv geformten Indenters mit dem erweiterten Hertzschen Ansatz und dessen Anwendung zur Fließspannungsbestimmung aus Eindringversuchen mit selbstähnlichen Berkovichpyramiden betrachtet. Zur Bearbeitung dieser Aufgabenstellung wurden unter anderem drei Referenzverfahren zur Fließspannungsbestimmung (die Expanding cavity-Modelle, das Loading partial unloading-Verfahren und Minidruckversuche) ausführlich charakterisiert. Damit konnten dann im Weiteren belastbare Referenzfließspannungen für die umfangreiche Experimentaldatenbasis zur Verfügung gestellt werden. Außerdem wurden die untersuchten Materialien auf den Einfluss der Größenabhängigkeit der Fließspannungen, den Indentation size effect, hin untersucht. Dabei wurden die vorliegenden physikalischen Vorgänge in den Proben beschrieben, dahingehende Unterschiede bei den betrachteten Referenzverfahren charakterisiert und den Fließspannungswerten die Fließzonendimensionen zugeordnet. Mit den damit zur Verfügung stehenden Informationen konnte das Konzept des effektiv geformten Indenters in seiner Anwendung zur Fließspannungsbestimmung grundlegend bewertet werden. Alle Untersuchungen wurden dabei stets parallel mit Hilfe von Simulations- und Experimentaldaten durchgeführt, um tiefere Einblicke in die zu Grunde liegende Mechanik der Fließprozesse zu gewinnen.

Page generated in 0.0666 seconds