Spelling suggestions: "subject:"erythroid"" "subject:"erythroide""
31 |
Novel Functions of Erythropoietin Receptor SignalingHidalgo, Daniel 15 March 2022 (has links)
Erythroid terminal differentiation couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. I used Epor−/− mouse erythroblasts endowed with survival signaling to identify novel non-redundant EpoR functions. I found that, paradoxically, EpoR signaling increases red cell size while also increasing the number and speed of erythroblast cell cycles. Specifically, I found that high levels of EpoR signaling increase the size and shorten the cycle of early erythroblasts, which are amongst the fastest cycling somatic cells. I confirmed the effect of erythropoietin (Epo) on red cell size in human volunteers, whose mean corpuscular volume (MCV) increases following Epo administration. Our work shows that EpoR signaling alters the expected inverse relationship between cell cycle length and cell size. Further, diagnostic interpretations of increased MCV should now include high Epo levels and hypoxic stress.
The ability of EpoR signaling to increase cell size in rapidly cycling early erythroblasts suggests that these cells have exceptionally efficient EpoR-driven mechanisms for growth. I found evidence for this in ongoing work, where Epor−/− and Stat5−/− single-cell transcriptomes show dysregulated expression of ribosomal proteins and rRNA transcription and processing genes. Global rates of ribosomal rRNA transcription and protein synthesis increase in an EpoR dependent manner during a narrow developmental window in early ETD, coincident with the time of cell cycle shortening. Our work therefore suggests EpoR-driven regulation of ribosome biogenesis and translation orchestrating rapid cycling and cell growth during early ETD.
|
32 |
Evidence for the physical interaction of endosomes with mitochondria in erythroid cellsKahawita, Tanya. January 2008 (has links)
No description available.
|
33 |
Apoptosis in myelodysplastic syndromes : effects of hemopoietic growth factors /Tehranchi, Ramin, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
|
34 |
Úloha cereblonu při terapii lenalidomidem u del(5q) myelodysplastického syndromu / The role of cereblon in lenalidomide therapy of del(5q) myelodysplastic syndromeBokorová, Radka January 2022 (has links)
Myelodysplastic syndrome (MDS) with deletion of the long arm of the chromosome 5 (5q - syndrome, del( 5q)) can be characterized by anemia, macrocytosis, a normal or high platelet count, and hypolobulated megakaryocytes in the bone marrow. 5q - syndrome belongs to low - risk MDS, which means low risk to transform to acute myeloid leukemia. 5q - syndrome is ass ociated with female predominance and older age. Another sign is transfusion burden that is treated by erythropoiesis - stimulating agents (ESA) as erythropoietin (EPO). Moreover, the response of MDS patients is around 30 - 60% with the median of the response b eing ~ 24 months. The second line of treatment is lenalidomide (LEN) which is a derivate of teratogenic analog thalidomide. LEN increases erythropoiesis and inhibits the growth of del(5q) erythroid progenitors in vivo and it does not have a significant effe ct on the growth of normal CD34+ progenitors or cytogenetically normal progenitors in MDS with del(5q) clones. LEN is used as therapy in multiple myeloma, myelodysplastic syndrome, and lymphoma. LEN is an expensive agent and not every MDS patient re sponds to this therapy. This is a reason why is a need to find a biomarker for the determination of successful treatment. Some multiple myeloma studies showed that cereblon can be the biomarker...
|
35 |
Analysis of Mouse EKLF/KLF2 E9.5 Double Knockout: Yolk Sac Morphology and Embryonic Erythroid MaturationLung, Tina Kathy 01 January 2007 (has links)
Krüppel-like factors (KLFs) are a family of transcription factors with 3 Cys2/His2 zinc fingers that regulate cell differentiation and developmental processes. EKLF is involved in primitive and definitive erythropoiesis; KLF2 is implicated in the development of primitive erythroid and endothelial cells of the vasculature. Using light and electron microscopy, the yolk sacs and dorsal aortae from EKLF/KLF2 double knockout (KO) E9.5 (embryonic day 9.5) were examined to determine whether these KLFs have compensatory functions in morphology of blood cells and vessels. EKLF/KLF2 double KO E9.5 erythroid, endothelial, and mesothelial cells had more severely abnormal morphology than WT and KLF2-/-. Flow cytometry and cytospins were used to determine maturational effects of single and EKLF/KLF2 double KO primitive erythroid cells double-labeled with anti-TER119 and anti-CD71. EKLF KO and EKLF/KLF2 double KO erythroid cells display defective erythroid maturation. EKLF and KLF2 have overlapping roles in the development of embryonic erythroid and endothelial cells.
|
36 |
Geração de célulastronco/progenitoras hematopoéticas e progenitores eritroides a partir de células-tronco de pluripotência induzida derivadas de pacientes com anemia falciforme / Generation of hematopoietic stem/progenitor cells and erythroid progenitor cells from induced pluripotent stem cells derived from patients with sickle cell anemiaPaes, Bárbara Cristina Martins Fernandes 18 October 2018 (has links)
As células-tronco de pluripotência induzida (iPSC) são células geradas a partir da reprogramação de células somáticas e têm potencial para diferenciação em todos os tipos celulares do organismo adulto. A indução da diferenciação de iPSC pacienteespecífico em células hematopoéticas é uma forma de estudo da hematopoese em modelos de doenças, como a anemia falciforme, e também essencial para o desenvolvimento de terapias. O presente estudo propôs a geração de célulastronco/progenitoras hematopoéticas e progenitores eritroides in vitro a partir de iPSC derivadas de pacientes com anemia falciforme através da formação de corpos embrioides. Ao longo da diferenciação, os desenvolvimentos hematopoético e eritroide foram monitorados através de ensaios de formação de colônia e imunofenotipagem por citometria de fluxo. Neste estudo, demonstramos a presença de células com fenótipo de células endoteliais no início da diferenciação hematopoética por formação de corpos embrioides, possivelmente indicando que as células progenitoras hematopoéticas são provenientes de um endotélio hemogênico. Também verificamos a presença de células endoteliais sem potencial de endotélio hemogênico. Geramos células com características de células-tronco/progenitoras hematopoéticas, de fenótipos CD34+CD45+ e CD45+CD43+, progenitores eritroides (CD36+, CD71+ e CD235a+), bem como a formação de colônias hematopoéticas em cultura em meio semi-sólido. A linhagem de iPSC PBscd08 demonstrou maior potencial para diferenciação em células hematopoéticas e eritroide que as demais linhagens celulares avaliadas. A linhagem PBscd01, também gerada a partir de células mononucleares do sangue periférico (PBMC) de paciente com anemia falciforme, não demonstrou o mesmo potencial para a diferenciação hematopoética, gerando apenas células CD34+ e baixa porcentagem de células CD45+ e CD43+. A linhagem de iPSC PB12, gerada a partir de PBMC de indivíduo saudável, promoveu a geração de populações de células CD34+, CD45+ e CD43+, mas não duplo-positivas, e a geração de células com morfologia de células mieloides após a maturação. As linhagens celulares de iPSC demonstraram variabilidade quanto ao potencial de diferenciação hematopoética. Isto monstra a necessidade de estudos futuros para uma investigação mais detalhada. / Induced pluripotent stem cells (iPSC) are cells generated by reprogramming somatic cells, they have the potential for differentiation into all types of cells in the adult organism. The differentiation of patient-specific iPSC into hematopoietic cells is a way of studying hematopoiesis in disease models, such as sickle cell anemia, and is also essential for the development of therapies. The present study proposed the generation of hematopoietic stem/progenitor cells and erythroid progenitors from iPSC derived from patients with sickle cell anemia. Throughout the differentiation, hematopoietic and erythroid developments were monitored by colony forming cell assay and immunophenotypic analysis. In this study, we demonstrated the presence of cells with endothelial phenotype at the beginning of hematopoietic differentiation by formation of embryoid bodies, possibly showing that hematopoietic progenitor cells originate from a hemogenic endothelium. We generated cells with characteristics of hematopoietic stem/progenitor cells, of CD34+CD45+ and CD45+CD43+ phenotypes, erythroid progenitors (CD36+, CD71+ and CD235a+), as well as the formation of hematopoietic colonies in culture in semi-solid medium. The iPSC line PBscd08 demonstrated greater potential for differentiation into hematopoietic and erythroid cells than the other cell lines evaluated. The iPSC line PBscd01, also generated from peripheral blood mononuclear cells (PBMC) from patients with sickle cell anemia, did not demonstrate the same potential for hematopoietic differentiation, generating only CD34+ cells and a low percentage of CD45+ and CD43+ cells. The iPSC line PB12, generated from healthy individual PBMC, promoted the generation of CD34+, CD45+ and CD43+ cell populations, but not double-positives, and the generation of cells with myeloid cell morphology after maturation. The iPSC cell lines demonstrated variability in the potential for hematopoietic differentiation. This shows the need for future studies for a more detailed investigation.
|
37 |
Geração de célulastronco/progenitoras hematopoéticas e progenitores eritroides a partir de células-tronco de pluripotência induzida derivadas de pacientes com anemia falciforme / Generation of hematopoietic stem/progenitor cells and erythroid progenitor cells from induced pluripotent stem cells derived from patients with sickle cell anemiaBárbara Cristina Martins Fernandes Paes 18 October 2018 (has links)
As células-tronco de pluripotência induzida (iPSC) são células geradas a partir da reprogramação de células somáticas e têm potencial para diferenciação em todos os tipos celulares do organismo adulto. A indução da diferenciação de iPSC pacienteespecífico em células hematopoéticas é uma forma de estudo da hematopoese em modelos de doenças, como a anemia falciforme, e também essencial para o desenvolvimento de terapias. O presente estudo propôs a geração de célulastronco/progenitoras hematopoéticas e progenitores eritroides in vitro a partir de iPSC derivadas de pacientes com anemia falciforme através da formação de corpos embrioides. Ao longo da diferenciação, os desenvolvimentos hematopoético e eritroide foram monitorados através de ensaios de formação de colônia e imunofenotipagem por citometria de fluxo. Neste estudo, demonstramos a presença de células com fenótipo de células endoteliais no início da diferenciação hematopoética por formação de corpos embrioides, possivelmente indicando que as células progenitoras hematopoéticas são provenientes de um endotélio hemogênico. Também verificamos a presença de células endoteliais sem potencial de endotélio hemogênico. Geramos células com características de células-tronco/progenitoras hematopoéticas, de fenótipos CD34+CD45+ e CD45+CD43+, progenitores eritroides (CD36+, CD71+ e CD235a+), bem como a formação de colônias hematopoéticas em cultura em meio semi-sólido. A linhagem de iPSC PBscd08 demonstrou maior potencial para diferenciação em células hematopoéticas e eritroide que as demais linhagens celulares avaliadas. A linhagem PBscd01, também gerada a partir de células mononucleares do sangue periférico (PBMC) de paciente com anemia falciforme, não demonstrou o mesmo potencial para a diferenciação hematopoética, gerando apenas células CD34+ e baixa porcentagem de células CD45+ e CD43+. A linhagem de iPSC PB12, gerada a partir de PBMC de indivíduo saudável, promoveu a geração de populações de células CD34+, CD45+ e CD43+, mas não duplo-positivas, e a geração de células com morfologia de células mieloides após a maturação. As linhagens celulares de iPSC demonstraram variabilidade quanto ao potencial de diferenciação hematopoética. Isto monstra a necessidade de estudos futuros para uma investigação mais detalhada. / Induced pluripotent stem cells (iPSC) are cells generated by reprogramming somatic cells, they have the potential for differentiation into all types of cells in the adult organism. The differentiation of patient-specific iPSC into hematopoietic cells is a way of studying hematopoiesis in disease models, such as sickle cell anemia, and is also essential for the development of therapies. The present study proposed the generation of hematopoietic stem/progenitor cells and erythroid progenitors from iPSC derived from patients with sickle cell anemia. Throughout the differentiation, hematopoietic and erythroid developments were monitored by colony forming cell assay and immunophenotypic analysis. In this study, we demonstrated the presence of cells with endothelial phenotype at the beginning of hematopoietic differentiation by formation of embryoid bodies, possibly showing that hematopoietic progenitor cells originate from a hemogenic endothelium. We generated cells with characteristics of hematopoietic stem/progenitor cells, of CD34+CD45+ and CD45+CD43+ phenotypes, erythroid progenitors (CD36+, CD71+ and CD235a+), as well as the formation of hematopoietic colonies in culture in semi-solid medium. The iPSC line PBscd08 demonstrated greater potential for differentiation into hematopoietic and erythroid cells than the other cell lines evaluated. The iPSC line PBscd01, also generated from peripheral blood mononuclear cells (PBMC) from patients with sickle cell anemia, did not demonstrate the same potential for hematopoietic differentiation, generating only CD34+ cells and a low percentage of CD45+ and CD43+ cells. The iPSC line PB12, generated from healthy individual PBMC, promoted the generation of CD34+, CD45+ and CD43+ cell populations, but not double-positives, and the generation of cells with myeloid cell morphology after maturation. The iPSC cell lines demonstrated variability in the potential for hematopoietic differentiation. This shows the need for future studies for a more detailed investigation.
|
38 |
Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2–related factors 1 and 2 (NRF1 and NRF2)Tian, Wang, de la Vega, Montserrat Rojo, Schmidlin, Cody J., Ooi, Aikseng, Zhang, Donna D. 09 February 2018 (has links)
Nuclear factor erythroid-2-related factor 1 (NRF1) and NRF2 are essential for maintaining redox homeostasis and coordinating cellular stress responses. They are highly homologous transcription factors that regulate the expression of genes bearing antioxidant-response elements (AREs). Genetic ablation of NRF1 or NRF2 results in vastly different phenotypic outcomes, implying that they play different roles and may be differentially regulated. Kelch-like ECH-associated protein 1 (KEAP1) is the main negative regulator of NRF2 and mediates ubiquitylation and degradation of NRF2 through its NRF2-ECH homology-like domain 2 (Neh2). Here, we report that KEAP1 binds to the Neh2-like (Neh2L) domain of NRF1 and stabilizes it. Consistently, NRF1 is more stable in KEAP1(+/+) than in KEAP1(-/-) isogenic cell lines, whereas NRF2 is dramatically stabilized in KEAP1(-/-) cells. Replacing NRF1's Neh2L domain with NRF2's Neh2 domain renders NRF1 sensitive to KEAP1-mediated degradation, indicating that the amino acids between the DLG and ETGE motifs, not just the motifs themselves, are essential for KEAP1-mediated degradation. Systematic site-directed mutagenesis identified the core amino acid residues required for KEAP1-mediated degradation and further indicated that the DLG and ETGE motifs with correct spacing are insufficient as a KEAP1 degron. Our results offer critical insights into our understanding of the differential regulation of NRF1 and NRF2 by KEAP1 and their different physiological roles.
|
39 |
Genes diferencialmente expressos em celulas eritroides tratadas com hidroxiureia e potencialmente envolvidos com a reativação da sintese de hemoglobina fetal / Differentially expressed genes in hydroxyurea treated erythroid cells and potentially involved in the reactivation of fetal hemoglobinMoreira, Luciana Sarmento 13 August 2018 (has links)
Orientador: Fernando Ferreira Costa / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas / Made available in DSpace on 2018-08-13T02:17:09Z (GMT). No. of bitstreams: 1
Moreira_LucianaSarmento_D.pdf: 2827950 bytes, checksum: 18e2b9c5f588fd10a022f548459239b5 (MD5)
Previous issue date: 2008 / Resumo: Anemia Falciforme (AF) é uma desordem hereditária das hemoglobinas, ausada por uma substituição de um único nucleotídeo adenina por timina (GAG?GTG), que resulta na presença de um aminoácido valina ao invés de ácido glutâmico na cadeia ? e na formação de uma hemoglobina anormal denominada hemoglobina S (Hb S). Hb S possui uma tendência de polimerização no estado deoxigenado. O grau de polimerização de Hb S na circulação determina o quanto um indivíduo terá crises vaso-oclusivas ou outro evento adverso. Altos níveis de hemoglobina fetal (Hb F) durante a vida adulta estão associados a uma melhora nos sintomas clínicos da AF devido à sua habilidade em inibir a polimerização de Hb S. Consequentemente, a busca por moduladores terapêuticos de Hb F continua a motivar a pesquisa básica e clínica, resultando em vários agentes farmacológicos que tem demonstrado um efeito no aumento da produção de Hb F. Hidroxiuréia (HU) é um fármaco que tem sido utilizado com sucesso na terapia de AF. Estudos multicêntricos demonstram que a administração de HU a pacientes com AF aumenta significativamente a produção de HbF e melhora os sintomas clínicos, pela redução da frequência de crises de dor e vaso-oclusivas, síndrome torácica aguda, necessidade de transfuções e hospitalizações. Acredita-se que HU beneficie indivíduos com AF através de vários mecanismos, incluindo o aumento dos níveis de Hb F. HU também promove a proliferação de precursors eritróides e uma diferenciação eritróide acelerada. Entretanto, o mecanismo completo de atuação da HU permanence desconhecido. Tem sido demonstrado que HU induz a expressão do gene ?-globina, possivelmente pela indução da via da guanilato ciclase, ou pelo aumento da expressão de fatores de transcrição, como EGR1, GATA-1 e outros genes com papel importante na eritropoese. Em um estudo recente, o padrão de expressão gênica global de células de medulla óssea humana foi avaliado em uma paciente com AF antes e após a administração de HU, utilizando SAGE (Serial Analysis of Gene Expression). Os autores identificaram vários genes envolvidos em diversos processos biológicos, tais como fatores de transcrição, transdução de sinal e atividade de transporte de canal ou poro, que podem representar novos alvos para a terapia da AF. Aqui, neste trabalho, nós investigamos o possível envolvimento de genes na indução da transcrição de ?-globina, utilizando o método SSH (Suppression Subtractive Hybridization) como um rastreamento inicial para identificar transcritos diferencialmente expressos na linhagem eritroleucêmica K562 com e sem a administração de HU, e reticulócitos obtidos de pacientes com AF (SSH) submetidos ou não submetidos ao tratamento com HU. A expressão de alguns genes identificados também foi avaliada por PCR em tempo real. Nós identificamos NACA (nascent-polypeptide-associated complex alpha subunit), STAT5 (signal transducer and activator of transcription-5), CRTC2 (CREB regulated transcription coactivator 2), ZDHHC2 (zinc finger, DHHC-type containing 2), dentre outros genes diferencialmente expressos, e confirmamos, por PCR em tempo real, seu aumento de expressão em reticulócitos de um grupo de pacientes em tratamento com HU. Como discutido aqui, estes genes podem desempenhar um papel importante no mecanismo de ação da HU. Este é o primeiro estudo demonstrando uma associação entre o tratamento com HU e a expressão dos genes descritos em células eritróides. Entretanto, estas alterações podem ter um papel importante no aumento típico de HbF nas células de pacientes tratados com HU e na diferenciação eritróide. Estudos funcionais posteriores com os genes mencionados podem ajudar na elucidação de seu papel potencial na regulação de globinas e na diferenciação eritróide mediada por HU ou outros agentes quimioterápicos, bem como contribuir para a compreensão dos mecanismos genéticos envolvidos em patologias das células eritróides, como AF e talassemias / Abstract: Sickle cell anemia (SCA) is an inherited disorder of hemoglobin, caused by a single nucleotide substitution of thymidine for adenine (GAG?GTG) in the ?-chain that results in the presence of the amino acid valine instead of glutamic acid and the formation of an abnormal hemoglobin called hemoglobin S (Hb S). Hb S is responsible for alterations in the properties of the hemoglobin tetramer, which has a tendency to polymerize in the deoxygenated state. The degree of Hb S polymerization in the circulation determines how likely the individual is to experience a vaso occlusive crisis or other adverse event. High levels of fetal haemoglobin (Hb F) during adult life have long been recognized to ameliorate the clinical symptoms of SCA due to its ability to inhibit the polymerization of Hb S. Consequently, the decades-long search for therapeutic modulators of Hb F has continued to motivate basic and clinical investigators alike. As a result, several pharmacological agents have been shown to increase Hb F production. A drug that has been successfully used for therapy in SCA is hydroxyurea (HU). Multicenter studies have shown that HU administration to SCA patients significantly increases Hb F production and improves clinical symptoms by reducing the frequency of pain and vaso-occlusive crisis, acute chest syndrome, transfusion requirements and hospitalizations. This drug is thought to benefit SCA individuals via several mechanisms, including the increase of Hb F levels. HU also promotes proliferation of erythroid precursors and an accelerated erythroid differentiation. However the complete pathway by which HU acts remains unclear. HU has been shown to induce the expression of ?-globin genes, possibly by the induction of guanylate cyclase protein kinase G pathways, or by the enhancement of the expression of transcription factors, such as early growth response 1 (EGR1), GATA-1 and other genes with important roles in erythropoiesis. In a recent study, Costa et. al. evaluated the global gene expression pattern of human bone marrow cells from a SCA patient before and after the administration of HU, using SAGE (Serial Analysis of Gene Expression). These authors identified a set of genes involved in various such as pathways as transcriptional factors, signal transduction and channel or pore class transporter activity that may represent new targets for SCA therapy. We herein, investigated the possible involvement of genes in HU- mediated induction of fetal globin transcription, using the suppression subtractive hybridization (SSH) method as an initial screen to identify differentially-expressed transcripts in K562 erythroleukemia cell line without and under HU administration and reticulocytes obtained from SCA patients in use or not of HU treatment. The expression of some of the detected genes were also evaluated using Real Time PCR. We identified NACA (nascent-polypeptide-associated complex alpha subunit), STAT5 (Signal transducer and activator of transcription-5), CRTC2 (CREB regulated transcription coactivator 2), ZDHHC2 (zinc finger, DHHC-type containing 2) transcripts, among other differentially expressed genes, and confirmed, by Real-Time PCR, their over-expression upon HU treatment in circulating reticulocytes from SCA patients. As discussed herein, these genes may play an important role in the mechanism of action of HU / Doutorado / Ciencias Basicas / Doutor em Clínica Médica
|
40 |
Étude de la collaboration entre les facteurs de transcription hématopoïétiques lors du développement et de la différenciation des cellules érythroïdesRoss, Julie 11 1900 (has links)
La régulation transcriptionnelle des gènes est cruciale pour permettre le bon fonctionnement des cellules. Afin que les cellules puissent accomplir leurs fonctions, les gènes doivent être exprimés adéquatement dans le bon type cellulaire et au stade de développement et de différenciation approprié. Un dérèglement dans l’expression de un ou plusieurs gènes peut entraîner de graves conséquences sur le destin de la cellule. Divers éléments en cis (ex : promoteurs et enhancers) et en trans (machinerie transcriptionnelle et facteurs de transcription) sont impliqués dans la régulation de la transcription.
Les gènes du locus humain beta-globine (hub) sont exprimés dans les cellules érythroïdes et sont finenement régulés lors du développement et de la différenciation. Des mutations dans différentes régions du locus causent entre autres les beta-thalassémies. Nous avons utilisé ce modèle bien caractérisé afin d’étudier différents mécanismes de régulation favorisés par les facteurs de transcription qui sont exprimés dans les cellules érythroïdes. Nous nous sommes intéressés à l’importance de l’élément en cis HS2 du Locus control region. Cet élément possède plusieurs sites de liaison pour des facteurs de transcription impliqués dans la régulation des gènes du locus hub. Nos résultats montrent que HS2 possède un rôle dans l’organisation de la chromatine du locus qui peut être dissocié de son rôle d’enhancer. De plus, HS2 n’est pas essentiel pour l’expression à haut niveau du gène beta alors qu’il est important pour l’expression des gènes gamma. Ceci suggère que le recrutement des différents facteurs au site HS2 lors du développement influence différement les gènes du locus.
Dans un deuxième temps, nous avons investigué l’importance de HS2 lors de la différenciation des cellules érythroïdes. Il avait été rapporté que l’absence de HS2 influence grandement la potentialisation de la chromatine du gène beta. La potentialisation dans les cellules progénitrices favorise l’activation transcriptionnelle du gène dans les cellules matures. Nous avons caractérisé le recrutement de différents facteurs de transcription au site HS2 et au promoteur beta dans les cellules progénitrices hématopoïétiques (CPH) ainsi que dans les cellules érythroïdes matures. Nos résultats montrent que le facteur EKLF est impliqué dans la potentialisation de la chromatine et favorise le recrutement des facteurs BRG1, p45 et CBP dans les CPH. L’expression de GATA-1 dans les cellules érythroïdes matures permet le recrutement de GATA-1 au locus hub dans ces cellules. Ces données suggèrent que la combinaison de EKLF et GATA-1 est requise pour permettre une activation maximale du gène beta dans les cellules érythroïdes matures.
Un autre facteur impliqué dans la régulation du locus hub est Ikaros. Nous avons étudié son recrutement au locus hub et avons observé que Ikaros est impliqué dans la répression des gènes gamma. Nos résultats montrent aussi que GATA-1 est impliqué dans la répression de ces gènes et qu’il interagit avec Ikaros. Ensemble, Ikaros et GATA-1 favorisent la formation d’un complexe de répression aux promoteurs gamma. Cette étude nous a aussi permis d’observer que Ikaros et GATA-1 sont impliqués dans la répression du gène Gata2. De façon intéressante, nous avons caractérisé le mécanisme de répression du gène Hes1 (un gène cible de la voie Notch) lors de la différenciation érythroïde. Similairement à ce qui a été observé pour les gènes gamma, Hes1 est aussi réprimé par Ikaros et GATA-1. Ces résultats suggèrent donc que la combinaison de Ikaros et GATA-1 est associée à la répression de plusieurs de gènes dans les cellules érythroïdes.
Globalement cette thèse rapporte de nouveaux mécanismes d’action de différents facteurs de transcription dans les cellules érythroïdes. Particulièrement, nos travaux ont permis de proposer un modèle pour la régulation des gènes du locus hub lors du développement et de la différenciation. De plus, nous rapportons pour la première fois l’importance de la collaboration entre les facteurs Ikaros et GATA-1 dans la régulation transcriptionnelle de gènes dans les cellules érythroïdes. Des mutations associées à certains des facteurs étudiés ont été rapportées dans des cas de beta-thalassémies ainsi que de leucémies. Nos travaux serviront donc à avoir une meilleure compréhension des mécanismes d’action de ces facteurs afin de potentiellement pouvoir les utiliser comme cibles thérapeutiques. / Gene transcriptional regulation is crucial for appropriate cell functioning. Genes must be properly expressed in the right cell type as well as at the right developmental and differenciation stage in order to allow the cells to accomplish their functions. Abnormal expression of one or many genes can dramatically influence cell fate. Diverse cis (ex : promoters and enhancers) and trans (transcriptional machinery and transcription factors) elements are involved in transcriptional regulation.
Genes of the human beta-globin (hub) locus are expressed in erythroid cells and are thightly regulated during development and differentiation. Mutations in several regions of the locus are involved in beta-thalassemia. We used this well characterized model in order to study different regulation mechanisms that are mediated by transcription factors expressed in erythroid cells. We were interested in the important role of the cis element HS2 from the Locus control region. This region contains several binding sites for transcription factors that are involved in hub locus gene regulation. Our results show that HS2 has a role in chromatin organization of the locus which is distinct from its enhancer function. Moreover, HS2 is not essential for high level beta gene expression while it is important for gamma gene expression. This suggest that the influence of transcription factors recruited to HS2 varies during development.
Secondly, we investigated HS2 importance during erythroid differentiation. It was reported the HS2 deletion strongly influences chromatin potentiation of beta gene. Potentiation in progenitor cells favors gene transcriptional activation in mature cells. We characterized transcription factor recruitment to HS2 and b promoter in hematopoietic progenitor cells (HPC). Our results show that EKLF is involved in chromatin potentiation and favors the recruitment of BRG1, p45 and CBP in HPC. GATA-1 expression in mature erythroid cells allows GATA-1 recruitment to hub locus in these cells. These data suggest that EKLF and GATA-1 combination is required to allow maximal beta gene activation in mature erythroid cells.
Another factor involved in hub locus regulation is Ikaros. We studied its recruitment to hub locus and found that Ikaros is involved in gamma gene repression. Our data also shows that GATA-1 is involved in the repression of these genes and that it interacts with Ikaros. Together, Ikaros and GATA-1 favors the formation of a repressive complex to gamma promoters. In this study, we also observed that Ikaros and GATA-1 are involved in Gata2 gene repression. Interestingly, we have also characterized the repression mechanism of Hes1 gene (a Notch target gene) during erythroid differentiation. Similar to what is observed for gamma genes, Hes1 is also repressed by Ikaros and GATA-1. Collectivelly, our data suggest that Ikaros and GATA-1 combination is associated with the repression of several genes in erythroid cells.
Globally, this thesis reports new mechanisms of action for different transcription factors in erythroid cells. Particularly, our work allows us to propose a model for hub locus gene regulation during development and differentiation. Moreover, we show for the first time that the combination of Ikaros and GATA-1 is relevant for gene regulation in erythroid cells. Several mutations in the transcription factors that we studied were associated with beta-thalassemia or leukemia. Our work will thus help to better understand mechanisms of action of these transcription factors in order to potentially use them as therapeutical targets.
|
Page generated in 0.0375 seconds