1 |
M.C. Escher: a bridge between art and scienceBillick, Nicole J. January 2000 (has links)
Boston University. University Professors Program Senior theses. / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / 2031-01-02
|
2 |
Figuras infernais no teatro de Samuel Beckett / Hellish figures in Samuel Beckett\'s theaterVasconcellos, Cláudia Maria de 09 February 2009 (has links)
A tese analisa as cinco primeiras peças teatrais de Beckett - Esperando Godot, Fim de Partida, A Última Fita de Krapp, Dias Felizes e Peça e procura identificar seus procedimentos formais básicos, chamados de figuras infernais. Na esteira de Adorno, o estudo da forma aqui realizado encontra na obra de Beckett uma reflexão das configurações sociais e do estado paradoxal da arte dentro deste quadro. As figuras infernais circularidade, confinamento, paradoxo, inconcludência, intermitência, dissimulação e coatividade erigemse também como instrumental crítico para a compreensão do teatro subsecutivo de Beckett, bem como de outros gêneros explorados pelo autor. / The thesis analyses the first five plays written by Beckett Waiting for Godot, Endgame, Krapps Last Tape, Happy Days and Play aiming to identify their fundamental formal procedures, which we call here hellish figures. Inspired by Adorno, our study of form finds in the work of Beckett a reflection about the social configuration and the paradoxal state of the Arts during his time. The hellish figures circularity, confinement, paradox, inconclusiveness, interminttence, dissimulation and enforcement can be used as a critical tool to understand Becketts other plays and writings.
|
3 |
Figuras infernais no teatro de Samuel Beckett / Hellish figures in Samuel Beckett\'s theaterCláudia Maria de Vasconcellos 09 February 2009 (has links)
A tese analisa as cinco primeiras peças teatrais de Beckett - Esperando Godot, Fim de Partida, A Última Fita de Krapp, Dias Felizes e Peça e procura identificar seus procedimentos formais básicos, chamados de figuras infernais. Na esteira de Adorno, o estudo da forma aqui realizado encontra na obra de Beckett uma reflexão das configurações sociais e do estado paradoxal da arte dentro deste quadro. As figuras infernais circularidade, confinamento, paradoxo, inconcludência, intermitência, dissimulação e coatividade erigemse também como instrumental crítico para a compreensão do teatro subsecutivo de Beckett, bem como de outros gêneros explorados pelo autor. / The thesis analyses the first five plays written by Beckett Waiting for Godot, Endgame, Krapps Last Tape, Happy Days and Play aiming to identify their fundamental formal procedures, which we call here hellish figures. Inspired by Adorno, our study of form finds in the work of Beckett a reflection about the social configuration and the paradoxal state of the Arts during his time. The hellish figures circularity, confinement, paradox, inconclusiveness, interminttence, dissimulation and enforcement can be used as a critical tool to understand Becketts other plays and writings.
|
4 |
Strongly typed evolutionary programmingKennedy, Claire Julia January 2000 (has links)
As the potential of applying machine learning techniques to perplexing problems is realised, increasingly complex problems are being tackled, requiring intricate explanations to be induced. Escher is a func tional logic language whose higher-order constructs allow arbitrarily complex observations to be captured and highly expressive generalisations to be conveyed. The work presented in this thesis alleviates the challenging problem of identifying an underlying structure normally required to search the resulting hypothesis space efficiently. This is achieved through STEPS, an evolutionary based system that allows the vast space of highly expressive Escher programs to be explored. STEPS provides a natural upgrade of the evolution of concept descriptions to the higher-order level. In particular STEPS uses the individual-as-terms approach to knowledge representation where all the information provided by an example is localised as a single closed term so that examples of arbitrary complexity can be treated in a uniform manner. STEPS also supports ?-abstractions as arguments to higher-order functions thus enabling the invention of new functions not contained in the original alphabet. Finally, STEPS provides a number of specialised genetic operators for the design of specific concept learning strategies. STEPS has been successfully applied to a number of complex real world problems, including the international PTE2 challenge. This problem involves the prediction of the Carcinogenic activity of a test set of 30 chemical compounds. The results produced by STEPS rank joint second if the hypothesis must be interpretable and joint first if interpretability is sacrificed for increased accuracy.
|
5 |
The integration of mathematics and art teaching geometry through the works of M.C. Escher /Mangiaracina-Mathews, Brie Anne, January 1900 (has links)
Thesis (M.S.) -- Central Connecticut State University, 2009. / Title from electronic title page. Project advisor: Adele Miller. "A special project submitted in partial fulfillment of the requirements for the degree of Master of Science in Secondary Mathematics Education." Includes bibliographical references.
|
6 |
Visual art made musical issues of shape, proportion and large-scale form in Escher sketches.Gage, Darren. Gage, Darren. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Music." Includes bibliographical references (p. 105).
|
7 |
Escher's Problem and Numerical SequencesPalmacci, Matthew Stephen 27 April 2006 (has links)
Counting problems lead naturally to integer sequences. For example if one asks for the number of subsets of an $n$-set, the answer is $2^n$, or the integer sequence $1,~2,~4,~8,~ldots$. Conversely, given an integer sequence, or part of it, one may ask if there is an associated counting problem. There might be several different counting problems that produce the same integer sequence. To illustrate the nature of mathematical research involving integer sequences, we will consider Escher's counting problem and a generalization, as well as counting problems associated with the Catalan numbers, and the Collatz conjecture. We will also discuss the purpose of the On-Line-Encyclopedia of Integer Sequences.
|
8 |
M C Escher : strange loops and architectureSellers, Ricky Baxley 12 1900 (has links)
No description available.
|
9 |
Geometria dinâmica no ensino de transformações no plano : uma experiência com professores da educação básicaMedeiros, Margarete Farias January 2012 (has links)
Nesta dissertação apresentamos a concepção, implementação e validação de uma proposta para o ensino de transformações geométricas no plano usando o ambiente de geometria dinâmica GeoGebra. A proposta integra Geometria e Arte através da construção de pavimentações do plano e de mosaicos de Escher e foi dirigida para professores do ensino fundamental, tendo como objetivo apresentar uma nova alternativa de trabalho na Geometria escolar e também capacitá-los para o uso de mídias digitais nas suas salas de aula. O trabalho foi desenvolvido dentro dos princípios da Engenharia Didática. Na análise e validação da implementação da proposta tomamos como base a teoria Sócio-Histórica, cuja referência principal é a obra de Vygotsky; também utilizamos o trabalho de Duval sobre registros de representação semiótica no processo de aprendizagem da Matemática. A partir das análises a priori e a posteriori observamos que os professores participantes da oficina, através do uso do GeoGebra, se apropriaram dos princípios da geometria dinâmica e dos conceitos da geometria das transformações. / This work presents the conception, implementation and validation of an experiment to teach geometric transformations in the plane using the dynamic geometry environment GeoGebra. The proposal integrates geometry and art through the construction of tessellations of the plane, including Escher's mosaics, and it was directed to elementary school teachers, aiming to present a new alternative to work with geometry using digital media. The work used the principles of Didactic Engineering and the analysis of the experiment was based on the Socio-Historical theory, whose main reference is the work of Vygotsky and on the work of Duval about registers of semiotic representation in the process of mathematics learning. The analysis a priori and a posteriori showed that the teachers, through the use of GeoGebra, learned the principles of dynamic geometry and the concepts of geometry transformations.
|
10 |
Geometria dinâmica no ensino de transformações no plano : uma experiência com professores da educação básicaMedeiros, Margarete Farias January 2012 (has links)
Nesta dissertação apresentamos a concepção, implementação e validação de uma proposta para o ensino de transformações geométricas no plano usando o ambiente de geometria dinâmica GeoGebra. A proposta integra Geometria e Arte através da construção de pavimentações do plano e de mosaicos de Escher e foi dirigida para professores do ensino fundamental, tendo como objetivo apresentar uma nova alternativa de trabalho na Geometria escolar e também capacitá-los para o uso de mídias digitais nas suas salas de aula. O trabalho foi desenvolvido dentro dos princípios da Engenharia Didática. Na análise e validação da implementação da proposta tomamos como base a teoria Sócio-Histórica, cuja referência principal é a obra de Vygotsky; também utilizamos o trabalho de Duval sobre registros de representação semiótica no processo de aprendizagem da Matemática. A partir das análises a priori e a posteriori observamos que os professores participantes da oficina, através do uso do GeoGebra, se apropriaram dos princípios da geometria dinâmica e dos conceitos da geometria das transformações. / This work presents the conception, implementation and validation of an experiment to teach geometric transformations in the plane using the dynamic geometry environment GeoGebra. The proposal integrates geometry and art through the construction of tessellations of the plane, including Escher's mosaics, and it was directed to elementary school teachers, aiming to present a new alternative to work with geometry using digital media. The work used the principles of Didactic Engineering and the analysis of the experiment was based on the Socio-Historical theory, whose main reference is the work of Vygotsky and on the work of Duval about registers of semiotic representation in the process of mathematics learning. The analysis a priori and a posteriori showed that the teachers, through the use of GeoGebra, learned the principles of dynamic geometry and the concepts of geometry transformations.
|
Page generated in 0.0467 seconds