Spelling suggestions: "subject:"espaços dde banach C(K)"" "subject:"espaços dde danach C(K)""
1 |
Sistemas biortogonais em espaços de Banach C(K) / Biorthogonal systems in Banach spaces C(K)Hida, Clayton Suguio 07 August 2014 (has links)
Este trabalho tem como objetivo principal aplicar elementos de teoria dos conjuntos no estudo de sistemas biortogonais em espaços de Banach. Inicialmente, estudamos o Teorema de Markushevic, que garante que todo espaço de Banach separável admite um sistema biortogonal enumerável. Assim, partimos para o estudo de espaços de Banach não separáveis, mais especificamente, estudamos a existência de sistemas biortogonais não enumeráveis em espaços de Banach da forma C(K), com K compacto Hausdorff não metrizável. Nesta direção, estudamos dois teoremas devido a S. Todorcevic. O primeiro teorema nos dá condições que um compacto Hausdorff K deve satisfazer de tal modo que o respectivo espaço de Banach C(K) possua sistemas biortogonais não enumeráveis. O segundo teorema nos diz que, assumindo o Axioma de Martin, todo espaço de Banach não separável da forma C(K) possui um sistema biortogonal não enumerável. Em seguida, consideramos algumas funções cardinais definidas por P. Koszmider para espaços de Banach, associadas aos sistemas biortogonais e estudamos suas relações com funções cardinais conhecidas. Em particular, obtemos um resultado original que relaciona o peso de um espaço compacto Hausdorff K com o tamanho de tipos especiais de sistemas biortogonais em C(K), generalizando um resultado de S. Todorcevic sobre álgebras de Boole. Finalmente, construímos um espaço de Ostaszewski K usando o Princípio Diamante. O espaço K é um compacto disperso não metrizável tal que todas suas potências finitas são hereditariamente separáveis. Este espaço é um exemplo consistente de um espaço compacto Hausdorff não metrizável tal que o respectivo espaço de Banach C(K) não admite sistemas biortogonais não enumeráveis. / The main purpose of this work is to apply elements of set theory to the study of biorthogonal systems in Banach spaces. Initially, we study Markushevic\'s Theorem, which ensures that every separable Banach space has a countable biorthogonal system. With this result, we focus our attention to the study of nonseparable Banach spaces, more especifically, we study the existence of uncountable biorthogonal systems in Banach spaces of the form C(K), with K a nonmetrizable compact Hausdorff space. In this direction, we study two theorems of S. Todorcevic. The first one gives us sufficient conditions that a compact Hausdorff space K must satisfy in order to get that the respective Banach space C(K) has an uncountable biorthogonal system. The second one tells us that under Martin\'s Axiom, every nonseparable Banach space of the form C(K) has an uncountable biorthogonal system. Next, we consider some cardinal functions defined by P. Koszmider for Banach spaces, related with biorthogonal systems, and we study its relations with well - known cardinal functions. In particular, we obtain an original result relating the weight of a compact Hausdorff space K to the size of certain biorthogonal systems in C(K), generalizing a result of S. Todorcevic for Boolean algebras. Finally, we construct an Ostaszewski space K using the Diamond Principle. The compact space K is a scattered nonmetrizable Hausdorff space such that all its finite powers are hereditarily separable. This space is a consistent example of a nonmetrizable compact Hausdorff space such that the respective Banach space C(K) does not have an uncountable biorthogonal system.
|
2 |
Construções genéricas de espaços de Asplund C(K) / Generic constructions of Asplund spaces C(K)Brech, Christina 29 April 2008 (has links)
Neste trabalho consideramos um método de construções genéricas de espaços compactos e dispersos não-metrizáveis, desenvolvido por Baumgartner, Shelah, Rabus, Juhasz e Soukup. Introduzimos novas técnicas e obtemos novas aplicações relevantes tanto para a topologia dos espaços compactos quanto para a geometria dos espaços de Banach de funções contínuas. As novas técnicas dizem respeito a novas amalgamações de condições do forcing que adiciona os espaços dispersos, bem como a generalizações dos argumentos dos autores acima citados de pontos de um espaço compacto K para medidas de Radon sobre K. Como aplicações, obtemos dois novos espaços compactos e dispersos K_1 e K_2, com as propriedades abaixo. K_1 é um espaço hereditariamente separável de peso aleph_1 tal que C(K_1) possui a propriedade (C) de Corson e não possui a propriedade (E) de Efremov. K_2 é o primeiro exemplo de um espaço compacto disperso, hereditariamente separável, de altura omega_2. Segue que o grau de Lindelöf hereditário de K_2 é aleph_2, mostrando a consistência de que hL(K) é estritamente maior que o sucessor de hd(K) para espaços compactos K. C(K_2) é o primeiro exemplo consistente de um espaço de densidade aleph_2 que não possui um sistema biortogonal não-enumerável. / In this work we consider a method of generic constructions of compact scattered non-metrizable spaces developed by Baumgartner, Shelah, Rabus, Juhasz and Soukup. We introduce new techniques and obtain new applications both relevant to topology of compact spaces and the geometry of Banach spaces of continuous functions. The new techniques concern new amalgamations of conditions of forcing which add the dispersed spaces as well as the generalizations of arguments of the above-mentioned authors from points of a compact space K to Radon measures on K. As applications we obtain two compact scattered spaces K_1 and K_2 with the properties below. K_1 is a hereditarily separable space of weight aleph_1 such that C(K_1) has property (C) of Corson and does not have property (E) of Efremov. K_2 is the first (consistent) example of a compact scattered space which is hereditarily separable and whose height is omega_2. It follows that its hereditary Lindelöf degree is aleph_2, showing the consistency of hL(K) can me strictly greater than the successor of hd(K) for compact spaces K. C(K_2) is the first consistent example of a Banach space of density aleph_2 without uncountable biorthogonal systems.
|
3 |
Construções genéricas de espaços de Asplund C(K) / Generic constructions of Asplund spaces C(K)Christina Brech 29 April 2008 (has links)
Neste trabalho consideramos um método de construções genéricas de espaços compactos e dispersos não-metrizáveis, desenvolvido por Baumgartner, Shelah, Rabus, Juhasz e Soukup. Introduzimos novas técnicas e obtemos novas aplicações relevantes tanto para a topologia dos espaços compactos quanto para a geometria dos espaços de Banach de funções contínuas. As novas técnicas dizem respeito a novas amalgamações de condições do forcing que adiciona os espaços dispersos, bem como a generalizações dos argumentos dos autores acima citados de pontos de um espaço compacto K para medidas de Radon sobre K. Como aplicações, obtemos dois novos espaços compactos e dispersos K_1 e K_2, com as propriedades abaixo. K_1 é um espaço hereditariamente separável de peso aleph_1 tal que C(K_1) possui a propriedade (C) de Corson e não possui a propriedade (E) de Efremov. K_2 é o primeiro exemplo de um espaço compacto disperso, hereditariamente separável, de altura omega_2. Segue que o grau de Lindelöf hereditário de K_2 é aleph_2, mostrando a consistência de que hL(K) é estritamente maior que o sucessor de hd(K) para espaços compactos K. C(K_2) é o primeiro exemplo consistente de um espaço de densidade aleph_2 que não possui um sistema biortogonal não-enumerável. / In this work we consider a method of generic constructions of compact scattered non-metrizable spaces developed by Baumgartner, Shelah, Rabus, Juhasz and Soukup. We introduce new techniques and obtain new applications both relevant to topology of compact spaces and the geometry of Banach spaces of continuous functions. The new techniques concern new amalgamations of conditions of forcing which add the dispersed spaces as well as the generalizations of arguments of the above-mentioned authors from points of a compact space K to Radon measures on K. As applications we obtain two compact scattered spaces K_1 and K_2 with the properties below. K_1 is a hereditarily separable space of weight aleph_1 such that C(K_1) has property (C) of Corson and does not have property (E) of Efremov. K_2 is the first (consistent) example of a compact scattered space which is hereditarily separable and whose height is omega_2. It follows that its hereditary Lindelöf degree is aleph_2, showing the consistency of hL(K) can me strictly greater than the successor of hd(K) for compact spaces K. C(K_2) is the first consistent example of a Banach space of density aleph_2 without uncountable biorthogonal systems.
|
Page generated in 0.0755 seconds