• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 3
  • Tagged with
  • 42
  • 42
  • 34
  • 31
  • 12
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspectos do processo de estampagem incremental

Tiburi, Fábio January 2007 (has links)
Este trabalho tem como objetivo apresentar as principais características do processo de estampagem incremental, suas aplicações, vantagens e limitações assim como verificar a sua viabilidade econômica em aplicações industriais. Os resultados obtidos mostram que este processo pode ser aplicado na indústria em fases de desenvolvimento de produtos ou até mesmo para a produção de pequenos lotes de peças. Os principais métodos utilizados na estampagem incremental são o não assistido por matriz, o semi-assistido por matriz e o assistido por matriz. Os parâmetros que tem maiores influências no processo são: a forma e acabamento da ferramenta, a estratégia de conformação, os incrementos durante a conformação, o sistema de fixação e o lubrificante utilizado. Uma comparação entre o processo de estampagem incremental não assistido por matriz e este processo utilizando uma matriz suporte foi realizado com o objetivo de se verificar a precisão dimensional de cada um dos métodos onde foi comprovado que o método assistido por matriz é mais adequado para a fabricação de produtos onde a tolerância dimensional é um requisito importante. Finalmente a viabilidade econômica do processo de estampagem incremental foi realizada e comparada com o processo de estampagem convencional, comprovando que a estampagem incremental é viável economicamente para pequenos lotes de peças. / This work aimed at presenting the main characteristics of the incremental sheet metal forming process, its applications, advantages and disadvantages and limitations as well as verify its economic viability in industrial applications. The obtained results shows that this process can be applied in industry in the product development phase or even in the production of small batches of parts. The main method utilized in the incremental sheet metal forming are dieless forming, semi-support and supported. The parameters that have great influence on the process are: shape and roughness of tool, the tool path, the step down, the holding system and the lubricant used in the forming process. A comparison between the incremental sheet forming with and with out die to support it was carried out aiming at verify the dimensional accuracy of each method. The method with a die to support it was proved to be is more appropriate to fabricate products where the dimensional accuracy is a important requirement. Finally, the economic viability analysis of the incremental sheet metal forming process were carried out and compared with the conventional stamping process, proving that the incremental sheet metal forming is economically feasible for small batches of pieces.
2

Aspectos do processo de estampagem incremental

Tiburi, Fábio January 2007 (has links)
Este trabalho tem como objetivo apresentar as principais características do processo de estampagem incremental, suas aplicações, vantagens e limitações assim como verificar a sua viabilidade econômica em aplicações industriais. Os resultados obtidos mostram que este processo pode ser aplicado na indústria em fases de desenvolvimento de produtos ou até mesmo para a produção de pequenos lotes de peças. Os principais métodos utilizados na estampagem incremental são o não assistido por matriz, o semi-assistido por matriz e o assistido por matriz. Os parâmetros que tem maiores influências no processo são: a forma e acabamento da ferramenta, a estratégia de conformação, os incrementos durante a conformação, o sistema de fixação e o lubrificante utilizado. Uma comparação entre o processo de estampagem incremental não assistido por matriz e este processo utilizando uma matriz suporte foi realizado com o objetivo de se verificar a precisão dimensional de cada um dos métodos onde foi comprovado que o método assistido por matriz é mais adequado para a fabricação de produtos onde a tolerância dimensional é um requisito importante. Finalmente a viabilidade econômica do processo de estampagem incremental foi realizada e comparada com o processo de estampagem convencional, comprovando que a estampagem incremental é viável economicamente para pequenos lotes de peças. / This work aimed at presenting the main characteristics of the incremental sheet metal forming process, its applications, advantages and disadvantages and limitations as well as verify its economic viability in industrial applications. The obtained results shows that this process can be applied in industry in the product development phase or even in the production of small batches of parts. The main method utilized in the incremental sheet metal forming are dieless forming, semi-support and supported. The parameters that have great influence on the process are: shape and roughness of tool, the tool path, the step down, the holding system and the lubricant used in the forming process. A comparison between the incremental sheet forming with and with out die to support it was carried out aiming at verify the dimensional accuracy of each method. The method with a die to support it was proved to be is more appropriate to fabricate products where the dimensional accuracy is a important requirement. Finally, the economic viability analysis of the incremental sheet metal forming process were carried out and compared with the conventional stamping process, proving that the incremental sheet metal forming is economically feasible for small batches of pieces.
3

Aspectos do processo de estampagem incremental

Tiburi, Fábio January 2007 (has links)
Este trabalho tem como objetivo apresentar as principais características do processo de estampagem incremental, suas aplicações, vantagens e limitações assim como verificar a sua viabilidade econômica em aplicações industriais. Os resultados obtidos mostram que este processo pode ser aplicado na indústria em fases de desenvolvimento de produtos ou até mesmo para a produção de pequenos lotes de peças. Os principais métodos utilizados na estampagem incremental são o não assistido por matriz, o semi-assistido por matriz e o assistido por matriz. Os parâmetros que tem maiores influências no processo são: a forma e acabamento da ferramenta, a estratégia de conformação, os incrementos durante a conformação, o sistema de fixação e o lubrificante utilizado. Uma comparação entre o processo de estampagem incremental não assistido por matriz e este processo utilizando uma matriz suporte foi realizado com o objetivo de se verificar a precisão dimensional de cada um dos métodos onde foi comprovado que o método assistido por matriz é mais adequado para a fabricação de produtos onde a tolerância dimensional é um requisito importante. Finalmente a viabilidade econômica do processo de estampagem incremental foi realizada e comparada com o processo de estampagem convencional, comprovando que a estampagem incremental é viável economicamente para pequenos lotes de peças. / This work aimed at presenting the main characteristics of the incremental sheet metal forming process, its applications, advantages and disadvantages and limitations as well as verify its economic viability in industrial applications. The obtained results shows that this process can be applied in industry in the product development phase or even in the production of small batches of parts. The main method utilized in the incremental sheet metal forming are dieless forming, semi-support and supported. The parameters that have great influence on the process are: shape and roughness of tool, the tool path, the step down, the holding system and the lubricant used in the forming process. A comparison between the incremental sheet forming with and with out die to support it was carried out aiming at verify the dimensional accuracy of each method. The method with a die to support it was proved to be is more appropriate to fabricate products where the dimensional accuracy is a important requirement. Finally, the economic viability analysis of the incremental sheet metal forming process were carried out and compared with the conventional stamping process, proving that the incremental sheet metal forming is economically feasible for small batches of pieces.
4

Estampagem incremental : compensação do retorno elástico e análise à rotura

Lopes, Tiago Filipe Ramos da Silva January 2013 (has links)
Estágio realizado no INEGI - e orientado pelo Dr. Pedro Teixeira / Tese de mestrado integrado. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 2013
5

Potentialities of the use of incremental forming in Computer Aided Design and manufacture of customized craniofacial implants

Bertol, Liciane Sabadin January 2012 (has links)
Operationen im Schädel‐ und Gesichtsbereich stellen nach wie vor eine große Herausforderung für die behandelnden Ärzte dar, weil sich oftmals die Abgrenzung des Knochendefekts und die Wiederherstellung der ursprünglichen Knochenstruktur als schwierig erweisen. Die erste Herausforderung dabei ist die Definition der Implantatgeometrie, da jeder Patient eine individuelle Anatomie und, im Falle eines Knochendefekts durch Traumata oder Tumore, jeder Defekt eine spezifische Form aufweist. Das Implantat sollte somit eine der originalen Knochenstruktur entsprechenden Geometrie besitzen und aus einem für die Implantation geeigneten Material bestehen. Weiterhin muss das für die Herstellung des Implantats gewählte Verfahren derart anpassungsfähig sein, dass auch die Erzeugung eines einzelnen individuellen Produktes möglich ist und keine übermäßigen Kosten im Werkzeug‐ und Formenbau verursacht werden. Im gegenwärtigen Szenario flexibler Herstellungsprozesse, die eine effiziente Blechumformung auch in kleineren Stückzahlen erlauben, liegt ein besonderer Schwerpunkt auf dem Verfahren der inkrementellen Umformung. In dieser Arbeit wird daher die Durchführbarkeit der präoperativen Herstellung individueller Implantate zur Wiederherstellung knöcherner Strukturen verschiedener Regionen im Schädel‐ und Gesichtsbereich mit dem Verfahren der inkrementellen Blechumformung untersucht. Dabei wurden unterschiedliche Methoden zur Modellierung von Implantaten aus patientenspezifischen CT‐Daten angewendet und Prozessparameter für die Herstellung verschiedener Formen von Titanimplantaten entwickelt. Ferner werden alternative Techniken vorgestellt, mit denen es ebenfalls möglich ist, solche Implantate herzustellen. Gleichwohl es Einschränkungen hinsichtlich der Formgenauigkeit und Komplexität der zu formenden Geometrie des Implantates gibt, zeigt diese Arbeit, dass das Verfahren der inkrementellen Blechumformung eine geeignete Alternative für die präoperative Herstellung von individuellen Implantaten für den Schädel‐ und Gesichtsbereich darstellt. / Atualmente, cirurgias de reconstrução craniofacial ainda são um desafio à equipe cirúrgica devido às dificuldades em definir e reparar o defeito ósseo. A definição da geometria do implante é o primeiro desafio, uma vez que cada paciente possui uma anatomia individual e, em caso de defeitos ósseos devido a traumas ou tumores, cada defeito possui uma forma específica. O implante deve, então, possuir geometria tal que o possibilite substituir a estrutura original e ser constituído de material apto para a implantação. Além disso, o processo de fabricação selecionado deve ser flexível a fim de possibilitar a produção de uma peça única, dispensando custos excessivos com ferramental. No cenário atual de processos de manufatura flexível, um destaque especial recebe o processo de estampagem incremental, que permite a conformação de chapas metálicas para a fabricação de pequenos lotes. Neste sentido, este estudo ocorre no âmbito da fabricação pré‐operatória de implantes personalizados para reparo de defeitos em diferentes regiões do complexo craniofacial através do processo de estampagem incremental. Foram utilizados diferentes procedimentos para modelagem dos implantes a partir de dados tomográficos e foram desenvolvidos parâmetros para a conformação de diferentes geometrias em titânio. São apresentadas, ainda, técnicas alternativas capazes de produzir tais implantes. O estudo mostra que, embora possua precisão dimensional limitada e restrições com relação à complexidade geométrica dos implantes que podem ser conformados, o processo de estampagem incremental apresenta‐se como uma alternativa viável à fabricação pré‐operatória de implantes personalizados para a reconstrução de defeitos craniofaciais. / Currently, craniofacial reconstruction surgeries are still a challenge for surgical teams due to the difficulty to define and repair bone defects. Defining the geometry of the implant is the first challenge, since each patient has an individual anatomy and, in case of bone defects due to trauma or tumors, each defect has a specific shape. The implant should then have a geometry that permits the replacement of the original structure and should consist of a material suitable for implantation. Moreover, the selected manufacturing process must be flexible enough to enable the production of a single piece, not requiring excessive cost with dyes and tooling. In the current scenario of flexible manufacturing processes, the process of incremental forming, which permits forming metal sheets to manufacture small batches, receives special emphasis. Thus, this study evaluates the feasibility of preoperative manufacturing of customized implants to repair defects in different regions of the craniofacial complex through the process of incremental forming. Different procedures were used for modeling implants obtained from CT data of patients and the parameters for forming different geometries of titanium implants were developed. Alternative techniques capable of producing such implants are also presented. The study shows that, although it has limited dimensional accuracy and restrictions regarding the geometric complexity of the implants that can be shaped, the single point incremental forming (SPIF) process represents a suitable alternative for the preoperative manufacturing of customized implants for the reconstruction of craniofacial defects.
6

Estampagem incremental de ponto simples : uma análise de conformabilidade baseada em mediação de força, desgaste de ferramenta e aquecimento

Silva, Pablo Josué da 21 December 2017 (has links)
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2017. / Submitted by Raquel Viana (raquelviana@bce.unb.br) on 2018-06-26T19:24:24Z No. of bitstreams: 1 2017_PabloJosuédaSilva.pdf: 93680006 bytes, checksum: 8caa8beb0a5b35ad6ce334bbfb96ff1b (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-06-29T16:43:59Z (GMT) No. of bitstreams: 1 2017_PabloJosuédaSilva.pdf: 93680006 bytes, checksum: 8caa8beb0a5b35ad6ce334bbfb96ff1b (MD5) / Made available in DSpace on 2018-06-29T16:43:59Z (GMT). No. of bitstreams: 1 2017_PabloJosuédaSilva.pdf: 93680006 bytes, checksum: 8caa8beb0a5b35ad6ce334bbfb96ff1b (MD5) Previous issue date: 2018-06-26 / A estampagem incremental de ponto simples (SPIF) trata de um processo produtivo que permite uma alta flexibilidade com baixo custo para produção de médios e pequenos lotes. Enquanto apresenta amplo espectro de implicação, erros dimensional e fissuras que ocorrem na peça que está sendo produzida, prejudicam o resultado esperado e limitam a disseminação da técnica na indústria. Uma das dificuldades de melhoria do processo e motivadores desse estudo é a carência na literatura de análises sobre os esforços envolvidos na estampagem incremental, o desgaste de ferramenta e as técnicas de melhoria do processo, visando a redução dos erros dimensionais e a melhoria da qualidade do produto. Esta tese apresenta um estudo visando a produção de qualidade e otimização da SPIF, por meio de experimentos e análise estatística em três frentes: análise de força, análise do desgaste da ferramenta e efeitos da adição de calor ao processo. Para análise de força foi desenvolvido um dispositivo de fixação que, acoplado a um dispositivo pie- zoelétrico Kistler modelo 9265B, possibilitando a medição das forças XYZ envolvidas. Após 41 ensaios, realizando uma regressão múltipla com os resultados de medição de força, foi possível chegar em uma formulação matemática capaz de prever as forças de conformação em relação aos parâmetros de processamento. O desgaste da ferramenta foi avaliado por intermédio de 27 execuções de peças, para definição do tempo de vida da ferramenta em relação ao seu desgaste para o SPIF. Os ensaios utilizaram ferramentas fabricada em aço SAE 1045, conformando chapas de aço galvanizados com 0,95mm de espessura. Com a análise do desgaste da ferramenta após cada ensaio, foi possível a definição de um modelo matemático de predição de vida de ferramenta. A análise de desgaste de ferramenta é relevante para a melhoria do processo, para se evitar que o desgaste ocorrido na ferramenta venha a ser um fator de inserção erro na estampagem. Por fim, foi desenvolvido um dispositivo de adição de calor para realização de estampagem incremental com aquecimento, aumentando a conformabilidade do material e permitir também uma melhoria da qualidade superficial da peça final. Com a realização de 26 ensaios com aquecimento, foram analisados os efeitos da adição do calor ao processo de conformação de peças simples e complexas. Sendo demonstrado o potencial da estampagem a com aquecimento na conformação de peças complexas que n˜ao puderam ser conformadas a frio. / Single Point Incremental Forming (SPIF) deals with a productive process that allows high flexibility with low cost for medium and small batches production. While presenting a wide spectrum of implication, dimensional errors and cracks occurring in the part being produced, they impair the expected result and limit the dissemination of the technique in the industry. One of the difficulties of process improvement and motivators of this study is the lack in the literature of the analysis of the efforts involved in incremental forming, tool wear and process improvement techniques, aiming at reducing dimensional errors and improving the quality of the product. This thesis presents a study aiming at the production of quality and optimization of SPIF, through experiments and statistical analysis on three fronts: force analysis, tool wear analysis and effects of the addition of heat to the process. For strength analysis has been developed a fastening device, a piezoelectric device coupled to Kistler 9265B model, enabling the measurement of XYZ forces involved. After 41 trials, performing a multiple regression with the force measuring results, it was possible to arrive at a mathematical formulation able to predict the conformation forces in relation to the processing parameters. The tool wear was evaluated through 27 configuration parameters for definition of tool life time in relation to its wear to the SPIF. The tests used tools made of SAE 1045 steel, forming galvanized steel sheets with 0.95mm thickness. With the analysis of tool wear after each test, it was possible to define a mathematical model of tool life prediction. The analysis of tool wear is relevant for the improvement of the process, in order to avoid that the wear occurring in the tool will be an error insertion factor in the conformation. Finally, a heat addition device was developed for performing incremental forming with heating, increasing the formability of the material and also allowing an improvement of the surface quality of the final part. With the accomplishment of 26 tests with heating, the effects of the addition of the heat to the process of forming of simple and complex pieces were analyzed. The potential of hot forming has been demonstrated in the conformation of complex parts that could not be cold formed.
7

Potentialities of the use of incremental forming in Computer Aided Design and manufacture of customized craniofacial implants

Bertol, Liciane Sabadin January 2012 (has links)
Operationen im Schädel‐ und Gesichtsbereich stellen nach wie vor eine große Herausforderung für die behandelnden Ärzte dar, weil sich oftmals die Abgrenzung des Knochendefekts und die Wiederherstellung der ursprünglichen Knochenstruktur als schwierig erweisen. Die erste Herausforderung dabei ist die Definition der Implantatgeometrie, da jeder Patient eine individuelle Anatomie und, im Falle eines Knochendefekts durch Traumata oder Tumore, jeder Defekt eine spezifische Form aufweist. Das Implantat sollte somit eine der originalen Knochenstruktur entsprechenden Geometrie besitzen und aus einem für die Implantation geeigneten Material bestehen. Weiterhin muss das für die Herstellung des Implantats gewählte Verfahren derart anpassungsfähig sein, dass auch die Erzeugung eines einzelnen individuellen Produktes möglich ist und keine übermäßigen Kosten im Werkzeug‐ und Formenbau verursacht werden. Im gegenwärtigen Szenario flexibler Herstellungsprozesse, die eine effiziente Blechumformung auch in kleineren Stückzahlen erlauben, liegt ein besonderer Schwerpunkt auf dem Verfahren der inkrementellen Umformung. In dieser Arbeit wird daher die Durchführbarkeit der präoperativen Herstellung individueller Implantate zur Wiederherstellung knöcherner Strukturen verschiedener Regionen im Schädel‐ und Gesichtsbereich mit dem Verfahren der inkrementellen Blechumformung untersucht. Dabei wurden unterschiedliche Methoden zur Modellierung von Implantaten aus patientenspezifischen CT‐Daten angewendet und Prozessparameter für die Herstellung verschiedener Formen von Titanimplantaten entwickelt. Ferner werden alternative Techniken vorgestellt, mit denen es ebenfalls möglich ist, solche Implantate herzustellen. Gleichwohl es Einschränkungen hinsichtlich der Formgenauigkeit und Komplexität der zu formenden Geometrie des Implantates gibt, zeigt diese Arbeit, dass das Verfahren der inkrementellen Blechumformung eine geeignete Alternative für die präoperative Herstellung von individuellen Implantaten für den Schädel‐ und Gesichtsbereich darstellt. / Atualmente, cirurgias de reconstrução craniofacial ainda são um desafio à equipe cirúrgica devido às dificuldades em definir e reparar o defeito ósseo. A definição da geometria do implante é o primeiro desafio, uma vez que cada paciente possui uma anatomia individual e, em caso de defeitos ósseos devido a traumas ou tumores, cada defeito possui uma forma específica. O implante deve, então, possuir geometria tal que o possibilite substituir a estrutura original e ser constituído de material apto para a implantação. Além disso, o processo de fabricação selecionado deve ser flexível a fim de possibilitar a produção de uma peça única, dispensando custos excessivos com ferramental. No cenário atual de processos de manufatura flexível, um destaque especial recebe o processo de estampagem incremental, que permite a conformação de chapas metálicas para a fabricação de pequenos lotes. Neste sentido, este estudo ocorre no âmbito da fabricação pré‐operatória de implantes personalizados para reparo de defeitos em diferentes regiões do complexo craniofacial através do processo de estampagem incremental. Foram utilizados diferentes procedimentos para modelagem dos implantes a partir de dados tomográficos e foram desenvolvidos parâmetros para a conformação de diferentes geometrias em titânio. São apresentadas, ainda, técnicas alternativas capazes de produzir tais implantes. O estudo mostra que, embora possua precisão dimensional limitada e restrições com relação à complexidade geométrica dos implantes que podem ser conformados, o processo de estampagem incremental apresenta‐se como uma alternativa viável à fabricação pré‐operatória de implantes personalizados para a reconstrução de defeitos craniofaciais. / Currently, craniofacial reconstruction surgeries are still a challenge for surgical teams due to the difficulty to define and repair bone defects. Defining the geometry of the implant is the first challenge, since each patient has an individual anatomy and, in case of bone defects due to trauma or tumors, each defect has a specific shape. The implant should then have a geometry that permits the replacement of the original structure and should consist of a material suitable for implantation. Moreover, the selected manufacturing process must be flexible enough to enable the production of a single piece, not requiring excessive cost with dyes and tooling. In the current scenario of flexible manufacturing processes, the process of incremental forming, which permits forming metal sheets to manufacture small batches, receives special emphasis. Thus, this study evaluates the feasibility of preoperative manufacturing of customized implants to repair defects in different regions of the craniofacial complex through the process of incremental forming. Different procedures were used for modeling implants obtained from CT data of patients and the parameters for forming different geometries of titanium implants were developed. Alternative techniques capable of producing such implants are also presented. The study shows that, although it has limited dimensional accuracy and restrictions regarding the geometric complexity of the implants that can be shaped, the single point incremental forming (SPIF) process represents a suitable alternative for the preoperative manufacturing of customized implants for the reconstruction of craniofacial defects.
8

Potentialities of the use of incremental forming in Computer Aided Design and manufacture of customized craniofacial implants

Bertol, Liciane Sabadin January 2012 (has links)
Operationen im Schädel‐ und Gesichtsbereich stellen nach wie vor eine große Herausforderung für die behandelnden Ärzte dar, weil sich oftmals die Abgrenzung des Knochendefekts und die Wiederherstellung der ursprünglichen Knochenstruktur als schwierig erweisen. Die erste Herausforderung dabei ist die Definition der Implantatgeometrie, da jeder Patient eine individuelle Anatomie und, im Falle eines Knochendefekts durch Traumata oder Tumore, jeder Defekt eine spezifische Form aufweist. Das Implantat sollte somit eine der originalen Knochenstruktur entsprechenden Geometrie besitzen und aus einem für die Implantation geeigneten Material bestehen. Weiterhin muss das für die Herstellung des Implantats gewählte Verfahren derart anpassungsfähig sein, dass auch die Erzeugung eines einzelnen individuellen Produktes möglich ist und keine übermäßigen Kosten im Werkzeug‐ und Formenbau verursacht werden. Im gegenwärtigen Szenario flexibler Herstellungsprozesse, die eine effiziente Blechumformung auch in kleineren Stückzahlen erlauben, liegt ein besonderer Schwerpunkt auf dem Verfahren der inkrementellen Umformung. In dieser Arbeit wird daher die Durchführbarkeit der präoperativen Herstellung individueller Implantate zur Wiederherstellung knöcherner Strukturen verschiedener Regionen im Schädel‐ und Gesichtsbereich mit dem Verfahren der inkrementellen Blechumformung untersucht. Dabei wurden unterschiedliche Methoden zur Modellierung von Implantaten aus patientenspezifischen CT‐Daten angewendet und Prozessparameter für die Herstellung verschiedener Formen von Titanimplantaten entwickelt. Ferner werden alternative Techniken vorgestellt, mit denen es ebenfalls möglich ist, solche Implantate herzustellen. Gleichwohl es Einschränkungen hinsichtlich der Formgenauigkeit und Komplexität der zu formenden Geometrie des Implantates gibt, zeigt diese Arbeit, dass das Verfahren der inkrementellen Blechumformung eine geeignete Alternative für die präoperative Herstellung von individuellen Implantaten für den Schädel‐ und Gesichtsbereich darstellt. / Atualmente, cirurgias de reconstrução craniofacial ainda são um desafio à equipe cirúrgica devido às dificuldades em definir e reparar o defeito ósseo. A definição da geometria do implante é o primeiro desafio, uma vez que cada paciente possui uma anatomia individual e, em caso de defeitos ósseos devido a traumas ou tumores, cada defeito possui uma forma específica. O implante deve, então, possuir geometria tal que o possibilite substituir a estrutura original e ser constituído de material apto para a implantação. Além disso, o processo de fabricação selecionado deve ser flexível a fim de possibilitar a produção de uma peça única, dispensando custos excessivos com ferramental. No cenário atual de processos de manufatura flexível, um destaque especial recebe o processo de estampagem incremental, que permite a conformação de chapas metálicas para a fabricação de pequenos lotes. Neste sentido, este estudo ocorre no âmbito da fabricação pré‐operatória de implantes personalizados para reparo de defeitos em diferentes regiões do complexo craniofacial através do processo de estampagem incremental. Foram utilizados diferentes procedimentos para modelagem dos implantes a partir de dados tomográficos e foram desenvolvidos parâmetros para a conformação de diferentes geometrias em titânio. São apresentadas, ainda, técnicas alternativas capazes de produzir tais implantes. O estudo mostra que, embora possua precisão dimensional limitada e restrições com relação à complexidade geométrica dos implantes que podem ser conformados, o processo de estampagem incremental apresenta‐se como uma alternativa viável à fabricação pré‐operatória de implantes personalizados para a reconstrução de defeitos craniofaciais. / Currently, craniofacial reconstruction surgeries are still a challenge for surgical teams due to the difficulty to define and repair bone defects. Defining the geometry of the implant is the first challenge, since each patient has an individual anatomy and, in case of bone defects due to trauma or tumors, each defect has a specific shape. The implant should then have a geometry that permits the replacement of the original structure and should consist of a material suitable for implantation. Moreover, the selected manufacturing process must be flexible enough to enable the production of a single piece, not requiring excessive cost with dyes and tooling. In the current scenario of flexible manufacturing processes, the process of incremental forming, which permits forming metal sheets to manufacture small batches, receives special emphasis. Thus, this study evaluates the feasibility of preoperative manufacturing of customized implants to repair defects in different regions of the craniofacial complex through the process of incremental forming. Different procedures were used for modeling implants obtained from CT data of patients and the parameters for forming different geometries of titanium implants were developed. Alternative techniques capable of producing such implants are also presented. The study shows that, although it has limited dimensional accuracy and restrictions regarding the geometric complexity of the implants that can be shaped, the single point incremental forming (SPIF) process represents a suitable alternative for the preoperative manufacturing of customized implants for the reconstruction of craniofacial defects.
9

Estudo dos parâmetros de conformabilidade para o processo de estampagem incremental

Fritzen, Daniel January 2016 (has links)
Este trabalho apresenta um estudo sobre o processo de Estampagem Incremental de Chapas, em Latão C-268 de diferentes espessuras (s0: 0.50, 0.70 e 1.00 mm), motivado pela inobservância de pesquisas desta matéria prima neste processo de conformação de chapas. Atualmente, este material tem grande aplicação na confecção de utensílios domésticos (baixelas, travessas, etc) e ferragens para construção civil (espelhos, cubas, etc), instrumentos musicais de sopro e núcleos de radiadores automotivos, tendo assim, um amplo campo de aplicação industrial, e potencial para as aplicações do processo de Estampagem Incremental de Chapas. A pesquisa está pautada na caracterização das matérias primas, para a obtenção de dados como as Curvas de Escoamento, Índices de Anisotropia (r), Curvas Limite de Conformação (CLC) e em experimentos de Estampagem Incremental de Chapas, realizados em uma máquina dedicada a este processo de conformação. Para a realização dos experimentos, foram utilizados Incrementos Verticais com diferentes valores (∆Z: 0.10, 0.50 e 1.00 mm), assim como duas ferramentas de estampagem (DT: Ø10 e Ø15 mm). Foram aplicadas duas formas geométricas diferentes: Tronco de Cone e Tronco de Pirâmide, ambos com perfil radial das paredes verticais. Ao todo, foram realizados 15 experimentos diferentes na modalidade SPIF. Os experimentos foram realizados em uma máquina dedicada ao processo, capaz da aquisição dos valores de Força (FX, FY e FZ) durante a realização dos testes. Com a realização dos experimentos SPIF, foi possível a elaboração da Linha Limite de Fratura – LFC da chapa latão C-268 nas três espessuras investigadas, onde os resultados apontam para valores maiores de deformação verdadeira (1 vs 2), quando comparados aos valores da CLC. Adicionalmente, a LFC das três espessuras de chapas analisadas, apontam os valores das maiores deformações verdadeiras (1) muito próximos, evidenciando neste caso que a diminuição do Incremento Vertical (∆Z) é mais relevante para a estampagem do que o aumento da espessura da chapa. As geometrias Tronco de Cone e Tronco de Pirâmide apresentaram discrepâncias geométricas toleráveis em relação ao perfil projetado, mas diferentes entre si, influenciados pelo retorno elástico diferente de cada geometria. Entretanto, suas fraturas apresentaram o mesmo comportamento, propagação no sentido meridional. Os experimentos SPIF realizados com a ferramenta de estampagem com Ø10mm proporcionaram as maiores profundidades. A medição da espessura final (s1) próximas as regiões fraturadas, comprovou os valores medidos não ultrapassaram os respectivos valores resultantes da expressão matemática Lei do Seno, e ainda, que quanto menor a espessura inicial (s0) da chapa, menor a variação dos valores medidos e calculados. A análise das Forças (FX, FY e FZ) resultantes do processo SPIF mostram que quanto maior o Incremento Vertical (∆Z), maior a espessura inicial (s0) da chapa, e maior do diâmetro (DT) da ferramenta de estampagem, maiores serão as Forças necessárias no SPIF. Adicionalmente, foi possível determinar os valores de Atrito (µ), obtidos em função das Forças (FX, FY e FZ) do processo SPIF. / This paper presents a study of the Incremental Sheet Forming process, in Brass C-268 of different thicknesses (s0: 0.50, 0.70 and 1.00 mm), motivated by non-observance of research of this raw material in this sheet forming process. Currently, this material has great application in the manufacture of household items (plates, platters, etc.) and hardware for building (locks, vats, etc.), wind musical instruments and automotive radiator cores, having thus, a large industrial application field, and potential for the applications of the Incremental Sheet Forming process. The research is based on the characterization of raw materials, to obtain data such as Flow Curves, Anisotropy Indices (r), Forming Limit Curve and in Incremental Sheet Forming experiments, performed on a machine dedicated to this forming process. For the realization of the experiments, Vertical Increments with different values were used (∆Z: 0.10, 0.50 e 1.00 mm), As well as two forming tools (DT: Ø10 e Ø15 mm). Two different geometric forms were applied: Cone Frustum and Pyramid Frustum, both with radial profile of vertical walls. In all, 15 different SPIF experiments were performed. The experiments were carried out in a machine dedicated to the process, able to acquire the values of Force (FX, FY e FZ) during the tests. With the realization of SPIF experiments, it was possible to elaborate the Fracture Forming Line – FFL of Brass C-268 sheet, In the three thicknesses investigated, Where the results indicate higher values of true strain (1 vs 2), when compared to the FLC values. Additionally, the FFL of the three sheet thicknesses analyzed, indicate the values of the highest true deformations (1) very close, evidencing in this case, that the decrease of Vertical Increment (∆Z) is more relevant for the forming than the increase in sheet thickness. The Cone Frustum and Pyramid Frustum geometries presented tolerable geometric discrepancies in relation to the projected profile, more different from each other, influenced by different springback of each geometry. However, their fractures presented the same behavior, meridional direction propagation. The SPIF experiments performed with the forming tool with Ø10mm provided the greatest depths. The final thickness (s1) measurement near the fractured regions, proved the measured values did not exceed the respective values resulting from the mathematical expression Sine Law, and also, that the lower the initial thickness (s0) of sheet, lower the variation of the measured and calculated values. Analysis of Forces (FX, FY e FZ) resulting from the SPIF process, show that the larger the Vertical Increment (∆Z), larger the initial thickness (s0) of the sheet, and larger diameter (DT) of the forming tool, larger will be the necessary forces in SPIF. In addition, it was possible to determine the values of Friction (µ), obtained in function of the SPIF Forces (FX, FY e FZ).
10

Análise de forças durante processo de estampagem incremental com o auxílio de extensometria

Lucca, Gustavo dos Santos de January 2015 (has links)
O presente trabalho possui o objetivo de avaliar a aplicabilidade da metrologia em uma ferramenta de estampagem incremental de chapas. Para o estudo foi confeccionada uma ferramenta de estampagem com rebaixos em seu corpo cilíndrico para a fixação dos sensores que mediram a deformação relativa. As análises apresentadas nesta pesquisa representam os cuidados e processos necessários ao uso de extensômetros aliado a um processo de fabricação mecânica. No presente estudo define-se a calibração de um sistema de medição da deformação superficial da ferramenta de estampagem com auxílio da Extensometria. Para validar os resultados obtidos pelos métodos da instrumentação das medidas das deformações e forças no processo de estampagem incremental foram utilizados os métodos de Cálculos Analíticos e Simulação Numérica por meio de softwares de Elementos Finitos. No método de medida se considerou parâmetros que podem comprometer os valores medidos tais como a medida da temperatura utilizando equipamentos termovisor. Além disso, foram realizados 04 (quatro) ensaios preliminares com o intuito de avaliar a medição de forma satisfatória nos eixos X e Y do processo de estampagem incremental, efetuando análises das forças nesses eixos em tração e compressão. A estampagem incremental ocorreu por meio de um total de 09 (nove) Ensaios variando-se ângulo de parede (ψ) e espessura das chapas (s0). Os experimentos baseiam-se na variante de estampagem incremental denominada Estampagem Incremental de Ponto Simples (SPIF – Single Point Incremental Forming). Para a execução dos testes práticos foram utilizados recursos de hardware como Ponte Wheatstone, extensômetros, Termovisor, Centro de Usinagem CNC, matriz incremental, ferramenta de estampagem incremental e um dispositivo prensa chapas. Além de recursos de software CAD/CAM, DAQ (Data Acquisition System), Análise de Elementos Finitos. E recursos de cálculos analíticos como forma comprobatória de resultados. A partir dos procedimentos executados junto com aparato tecnológico foi possível efetuar as análises e medições das forças na ferramenta de estampagem incrementa com referência aos eixos X e Y. Demonstrando neste a aplicabilidade de extensometria para leitura e análise de forças no processo de ISF. / This present work has the objective of assessing the applicability of instrumentation science in an incremental forming tool. For this study was made a tool with recesses on its cylindrical body as a means of fixing the strain sensors. The study presented demonstrate some of the warning and processes required the use of Strain Gages combined with a mechanical manufacturing process. In the present study is defined as an acceptable calibration measuring system with the aid of Extensometry. To validate the results obtained by the methods of instrumentation measurements of the deformations and forces in incremental sheet forming process were used Analytical Calculations and Numerical Simulation using Finite Elements. The measurement method was considered parameters that can compromise the measured values such as temperature measurement devices using thermometer. In addition, we conducted four (04) preliminary tests in order to evaluate the measurement system in satisfactory form with measured variables such as X and Y axes. We analyses the traction and compression forces in both axes. After the preliminary step, was performed a total of nine (09) tests with incremental sheet forming process, varying wall angle (ψ) and the thickness (s0). The experiments are based on the Single Point Incremental Forming - SPIF. For the implementation of the practical tests were used hardware resources such as CNC Machining Center, Wheatstone Bridge, Strain Gauges, Thermal Imager, incremental matrix and incremental forming tool. Besides, we used softwares such as CAD/CAM, DAQ (Data Acquisition System) and Finite Element Analysis. From the technological procedures perform with apparatus was possible do carry out the analyzes and measurement of forces in incremental sheet forming tool increases about to the axes X and Y. Demonstrating the applicability of the extensometry for reading and analyzing forces in the ISF process.

Page generated in 0.1571 seconds