• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification récursive de systèmes continus à paramètres variables dans le temps / Recursive identification of continuous-time systems with time-varying parameters

Padilla, Arturo 05 July 2017 (has links)
Les travaux présentés dans ce mémoire traitent de l'identification des systèmes dynamiques représentés sous la forme de modèles linéaires continus à paramètres variant lentement au cours du temps. La complexité du problème d'identification provient d'une part du caractère inconnu de la loi de variation des paramètres et d'autre part de la présence de bruits de nature inconnue sur les signaux mesurés. Les solutions proposées s'appuient sur une combinaison judicieuse du filtre de Kalman en supposant que les variations des paramètres peuvent être représentées sous la forme d'une marche aléatoire et de la méthode de la variable instrumentale qui présente l'avantage d'être robuste vis à vis de la nature des bruits de mesure. Les algorithmes de type récursif sont développés dans un contexte d'identification en boucle ouverte et en boucle fermée. Les différentes variantes se distinguent par la manière dont est construit la variable instrumentale. Inspirée de la solution développée pour les systèmes linéaires à temps invariant, une construction adaptative de la variable instrumentale est suggérée pour pouvoir suivre au mieux l'évolution des paramètres. Les performances des méthodes développées sont évaluées à l'aide de simulations de Monte Carlo et montrent la suprématie des solutions proposées s'appuyant sur la variable instrumentale par rapport celles plus classiques des moindres carrés récursifs. Les aspects pratiques et d'implantation numérique sont d'une importance capitale pour obtenir de bonnes performances lorsque ces estimateurs sont embarqués. Ces aspects sont étudiés en détails et plusieurs solutions sont proposées non seulement pour robustifier les estimateurs vis à vis du choix des hyper-paramètres mais également vis à vis de leur implantation numérique. Les algorithmes développés sont venus enrichir les fonctions de la boîte à outils CONTSID pour Matlab. Enfin, les estimateurs développés sont exploités pour faire le suivi de paramètres de deux systèmes physiques : un benchmark disponible dans la littérature constitué d'un filtre électronique passe-bande et une vanne papillon équipant les moteurs de voiture. Les deux applications montrent le potentiel des approches proposées pour faire le suivi de paramètres physiques variant lentement dans le temps / The work presented in this thesis deals with the identification of dynamic systems represented through continuous-time linear models with slowly time-varying parameters. The complexity of the identification problem comes on the one hand from the unknown character of the parameter variations and on the other hand from the presence of noises of unknown nature on the measured signals. The proposed solutions rely on a judicious combination of the Kalman filter assuming that the variations of the parameters can be represented in the form of a random walk, and the method of the instrumental variable which has the advantage of being robust with respect to the nature of the measurement noises. The recursive algorithms are developed in an open-loop and closed-loop identification setting. The different variants are distinguished by the way in which the instrumental variable is built. Inspired by the solution developed for time-invariant linear systems, an adaptive construction of the instrumental variable is suggested in order to be able to follow the evolution of the parameters as well as possible. The performance of the developed methods are evaluated using Monte Carlo simulations and show the supremacy of the proposed solutions based on the instrumental variable compared with the more classical least squares based approaches. The practical aspects and implementation issues are of paramount importance to obtain a good performance when these estimators are used. These aspects are studied in detail and several solutions are proposed not only to robustify the estimators with respect to the choice of hyperparameters but also with respect to their numerical implementation. The algorithms developed have enhanced the functions of the CONTSID toolbox for Matlab. Finally, the developed estimators are considered in order to track parameters of two physical systems: a benchmark available in the literature consisting of a bandpass electronic filter and a throttle valve equipping the car engines. Both applications show the potential of the proposed approaches to track physical parameters that vary slowly over time
2

Contributions à l'identification de modèles à temps continu à partir de données échantillonnées à pas variable / Contributions to the identification of continuous-time models from irregulalrly sampled data

Chen, Fengwei 21 November 2014 (has links)
Cette thèse traite de l’identification de systèmes dynamiques à partir de données échantillonnées à pas variable. Ce type de données est souvent rencontré dans les domaines biomédical, environnemental, dans le cas des systèmes mécaniques où un échantillonnage angulaire est réalisé ou lorsque les données transitent sur un réseau. L’identification directe de modèles à temps continu est l’approche à privilégier lorsque les données disponibles sont échantillonnées à pas variable ; les paramètres des modèles à temps discret étant dépendants de la période d’échantillonnage. Dans une première partie, un estimateur optimal de type variable instrumentale est développé pour estimer les paramètres d’un modèle Box-Jenkins à temps continu. Ce dernier est itératif et présente l’avantage de fournir des estimées non biaisées lorsque le bruit de mesure est coloré et sa convergence est peu sensible au choix du vecteur de paramètres initial. Une difficulté majeure dans le cas où les données sont échantillonnées à pas variable concerne l’estimation de modèles de bruit de type AR et ARMA à temps continu (CAR et CARMA). Plusieurs estimateurs pour les modèles CAR et CARMA s’appuyant sur l’algorithme Espérance-Maximisation (EM) sont développés puis inclus dans l’estimateur complet de variable instrumentale optimale. Une version étendue au cas de l’identification en boucle fermée est également développée. Dans la deuxième partie de la thèse, un estimateur robuste pour l'identification de systèmes à retard est proposé. Cette classe de systèmes est très largement rencontrée en pratique et les méthodes disponibles ne peuvent pas traiter le cas de données échantillonnées à pas variable. Le retard n’est pas contraint à être un multiple de la période d’échantillonnage, contrairement à l’hypothèse traditionnelle dans le cas de modèles à temps discret. L’estimateur développé est de type bootstrap et combine la méthode de variable instrumentale itérative pour les paramètres de la fonction de transfert avec un algorithme numérique de type gradient pour estimer le retard. Un filtrage de type passe-bas est introduit pour élargir la région de convergence pour l’estimation du retard. Tous les estimateurs proposés sont inclus dans la boîte à outils logicielle CONTSID pour Matlab et sont évalués à l’aide de simulation de Monte-Carlo / The output of a system is always corrupted by additive noise, therefore it is more practical to develop estimation algorithms that are capable of handling noisy data. The effect of white additive noise has been widely studied, while a colored additive noise attracts less attention, especially for a continuous-time (CT) noise. Sampling issues of CT stochastic processes are reviewed in this thesis, several sampling schemes are presented. Estimation of a CT stochastic process is studied. An expectation-maximization-based (EM) method to CT autoregressive/autoregressive moving average model is developed, which gives accurate estimation over a large range of sampling interval. Estimation of CT Box-Jenkins models is also considered in this thesis, in which the noise part is modeled to improve the performance of plant model estimation. The proposed method for CT Box-Jenkins model identification is in a two-step and iterative framework. Two-step means the plant and noise models are estimated in a separate and alternate way, where in estimating each of them, the other is assumed to be fixed. More specifically, the plant is estimated by refined instrumental variable (RIV) method while the noise is estimated by EM algorithm. Iterative means that the proposed method repeats the estimation procedure several times until a optimal estimate is found. Many practical systems have inherent time-delay. The problem of identifying delayed systems are of great importance for analysis, prediction or control design. The presence of a unknown time-delay greatly complicates the parameter estimation problem, essentially because the model are not linear with respect to the time-delay. An approach to continuous-time model identification of time-delay systems, combining a numerical search algorithm for the delay with the RIV method for the dynamic has been developed in this thesis. In the proposed algorithm, the system parameters and time-delay are estimated reciprocally in a bootstrap manner. The time-delay is estimated by an adaptive gradient-based method, whereas the system parameters are estimated by the RIV method. Since numerical method is used in this algorithm, the bootstrap method is likely to converge to local optima, therefore a low-pass filter has been used to enlarge the convergence region for the time-delay. The performance of the proposed algorithms are evaluated by numerical examples

Page generated in 0.1494 seconds