• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification récursive de systèmes continus à paramètres variables dans le temps / Recursive identification of continuous-time systems with time-varying parameters

Padilla, Arturo 05 July 2017 (has links)
Les travaux présentés dans ce mémoire traitent de l'identification des systèmes dynamiques représentés sous la forme de modèles linéaires continus à paramètres variant lentement au cours du temps. La complexité du problème d'identification provient d'une part du caractère inconnu de la loi de variation des paramètres et d'autre part de la présence de bruits de nature inconnue sur les signaux mesurés. Les solutions proposées s'appuient sur une combinaison judicieuse du filtre de Kalman en supposant que les variations des paramètres peuvent être représentées sous la forme d'une marche aléatoire et de la méthode de la variable instrumentale qui présente l'avantage d'être robuste vis à vis de la nature des bruits de mesure. Les algorithmes de type récursif sont développés dans un contexte d'identification en boucle ouverte et en boucle fermée. Les différentes variantes se distinguent par la manière dont est construit la variable instrumentale. Inspirée de la solution développée pour les systèmes linéaires à temps invariant, une construction adaptative de la variable instrumentale est suggérée pour pouvoir suivre au mieux l'évolution des paramètres. Les performances des méthodes développées sont évaluées à l'aide de simulations de Monte Carlo et montrent la suprématie des solutions proposées s'appuyant sur la variable instrumentale par rapport celles plus classiques des moindres carrés récursifs. Les aspects pratiques et d'implantation numérique sont d'une importance capitale pour obtenir de bonnes performances lorsque ces estimateurs sont embarqués. Ces aspects sont étudiés en détails et plusieurs solutions sont proposées non seulement pour robustifier les estimateurs vis à vis du choix des hyper-paramètres mais également vis à vis de leur implantation numérique. Les algorithmes développés sont venus enrichir les fonctions de la boîte à outils CONTSID pour Matlab. Enfin, les estimateurs développés sont exploités pour faire le suivi de paramètres de deux systèmes physiques : un benchmark disponible dans la littérature constitué d'un filtre électronique passe-bande et une vanne papillon équipant les moteurs de voiture. Les deux applications montrent le potentiel des approches proposées pour faire le suivi de paramètres physiques variant lentement dans le temps / The work presented in this thesis deals with the identification of dynamic systems represented through continuous-time linear models with slowly time-varying parameters. The complexity of the identification problem comes on the one hand from the unknown character of the parameter variations and on the other hand from the presence of noises of unknown nature on the measured signals. The proposed solutions rely on a judicious combination of the Kalman filter assuming that the variations of the parameters can be represented in the form of a random walk, and the method of the instrumental variable which has the advantage of being robust with respect to the nature of the measurement noises. The recursive algorithms are developed in an open-loop and closed-loop identification setting. The different variants are distinguished by the way in which the instrumental variable is built. Inspired by the solution developed for time-invariant linear systems, an adaptive construction of the instrumental variable is suggested in order to be able to follow the evolution of the parameters as well as possible. The performance of the developed methods are evaluated using Monte Carlo simulations and show the supremacy of the proposed solutions based on the instrumental variable compared with the more classical least squares based approaches. The practical aspects and implementation issues are of paramount importance to obtain a good performance when these estimators are used. These aspects are studied in detail and several solutions are proposed not only to robustify the estimators with respect to the choice of hyperparameters but also with respect to their numerical implementation. The algorithms developed have enhanced the functions of the CONTSID toolbox for Matlab. Finally, the developed estimators are considered in order to track parameters of two physical systems: a benchmark available in the literature consisting of a bandpass electronic filter and a throttle valve equipping the car engines. Both applications show the potential of the proposed approaches to track physical parameters that vary slowly over time
2

Predictive vehicle motion control for post-crash scenarios

Nigicser, David January 2017 (has links)
The aim of the project is to design an active safety system forpassenger vehicles for mitigating secondary collisions after an initialimpact. The control objective is to minimize the lateral deviationfrom the known original path while achieving a safe heading angle afterthe initial collision. A hierarchical controller structure is proposed:the higher layer is formulated as a linear time varying model predictivecontroller that denes the virtual control moment input; the lowerlayer deploys a rule-based controller that realizes the requested moment.The designed control system is then tested and validated inSimulink as well as in IPG CarMaker, a high delity vehicle dynamicssimulator. / Syftet med projektet är att för personbilar designa ett aktivtsäkerhetssystem för att undvika följdkollisioner efter en första kollision.Målet är att minimera den laterala avvikelsen från den ursprungligafärdvägen och att samtidigt uppnå en säker kurs efter den första kollisionen.En hierarkisk regulatorstruktur föreslås. Det övre skiktet iregulatorn är formulerat som en linjär tidsvarierande modell prediktivkontroller som definierar den virtuella momentinmatningen. Det nedreskiktet använder en regelbaserad regulator som realiserar det begärdamomentet. Det konstruerade styrsystemet testades och validerades sedani Simulink samt i IPG CarMaker, en simulator med hög precisionför fordonsdynamik.
3

Control of an Over-Actuated Vehicle for Autonomous Driving and Energy Optimization : Development of a cascade controller to solve the control allocation problem in real-time on an autonomous driving vehicle / Styrning av ett överaktuerat fordon för självkörande drift och energioptimering : Utveckling av en kaskadregulator för att lösa problemet med styrningsallokering i realtid för autonoma fordon

Grandi, Gianmarco January 2023 (has links)
An Over-Actuated (OA) vehicle is a system that presents more control variables than degrees of freedom. Therefore, more than one configuration of the control input can drive the system to a desired state in the state space, and this redundancy can be exploited to fulfill other tasks or solve further problems. In particular, nowadays, challenges concerning electric vehicles regarding their autonomy and solutions to reduce energy consumption are becoming more and more attractive. OA vehicles, on this problem, offer the possibility of using the redundancy to choose the control input, among possible ones, so as to minimize energy consumption. In this regard, the research objective is to investigate different techniques to control in real-time an over-actuated autonomous driving vehicle to guarantee trajectory following and stability with the aim of minimizing energy consumption. The research project focuses on a vehicle able to drive and steer the four wheels (4WD, 4WS) independently. This work extends the contribution of previous theoretical energy-based research developed and provides a control algorithm that must work in real-time on a prototype vehicle (RCV-E) developed at the Integrated Transport Research Lab (ITRL) within KTH with the over-actuation investigated. To this end, the control algorithm has to balance the complexity of a multi-input system, the optimal allocation objectives, and the agility to run in real-time on the MicroAutoBox II - dSPACE system mounted on the vehicle. The solution proposed is a two-level controller which handles separately high and low-rate dynamics with an adequate level of complexity. The upper level is responsible for trajectory following and energy minimization. The allocation problem is solved in two steps. A Linear Time-Varying Model Predictive Controller (LTV-MPC) solves the trajectory-following problem and allocates the forces at the wheels considering the wheel energy losses due to longitudinal and lateral sliding. The second step re-allocates the longitudinal forces between the front and rear axles by considering each side of the vehicle independently to minimize energy loss in the motors. The lower level is responsible for transforming the forces at the wheels into torques and steering angles; it runs at a faster rate than the upper level to account for the high-frequency dynamics of the wheels. Last, the overall control strategy is tested in simulation concerning the trajectory-following and energy minimization performance. The real-time performance are assessed on MircoAutoBox II, the control interface used on the RCV-E. / Ett fordon med olika grad av över-aktuering är ett system som har fler kontrollvariabler än frihetsgrader. Därför kan mer än en konfiguration av styrinmatningen driva systemet till ett önskat tillstånd i tillståndsrummet, och denna redundans kan utnyttjas för att utföra andra uppgifter eller lösa andra problem. I synnerhet blir det i dag allt mer attraktivt med utmaningar som rör elfordon när det gäller deras självklörande drift och lösningar för att minska energiförbrukningen. Överaktuerat fordon ger möjlighet att använda redundansen för att välja en av de möjliga styrinmatningarna för att minimera energiförbrukningen. Forskningsmålet är att undersöka olika tekniker för att i realtid styra ett självkörande fordon som är överaktuerat för att garantera banföljning och stabilitet i syfte att minimera energiförbrukningen. Forskningsprojektet är inriktat på ett fordon som kan köra och styra de fyra hjulen (4WD, 4WS) självständigt. Detta arbete utökar bidraget från den tidigare teoretisk energi-baserade forskning som utvecklats genom att tillhandahålla en regleralgoritm som måste fungera i realtid på ett prototypfordon (RCV-E) som utvecklats vid ITRL inom KTH med den undersökta överaktueringen. I detta syfte måste regleralgoritmen balansera komplexiteten hos ett system med flera ingångar, målen för optimal tilldelning och smidigheten samt att fungera i realtid på MicroAutoBox II - dSPACE-systemet som är monterat på fordonet. Den föreslagna lösningen är en tvåstegsstyrning som hanterar dynamiken med hög och låg hastighet separat med en lämplig komplexitetsnivå. Den övre nivån ansvarar för banföljning och energiminimering. Tilldelningsproblemet löses i två steg. En LTV-MPC löser banföljningsproblemet och fördelar krafterna på hjulen med hänsyn till energiförlusterna på hjulen på grund av longitudinell och lateral glidning. I det andra steget omfördelas de längsgående krafterna mellan fram- och bakaxlarna genom att varje fordonssida beaktas oberoende av varandra för att minimera energiförlusterna i motorerna. Den lägre nivån ansvarar för att omvandla krafterna vid hjulen till vridmoment och styrvinklar; den körs i snabbare takt än den övre nivån för att ta hänsyn till hjulens högfrekventa dynamik. Slutligen testas den övergripande reglerstrategin i simulering med avseende på banföljning och energiminimering, och därefter på MircoAutoBox II monterad på RCV-E för att bedöma realtidsprestanda. / Un veicolo sovra-attuato è un sistema che presenta più variabili di controllo che gradi di libertà. Pertanto, più di una configurazione dell’ingresso di controllo può portare il sistema a uno stato desiderato nello spazio degli stati e questa ridondanza può essere sfruttata per svolgere altri compiti o risolvere ulteriori problemi. In particolare, al giorno d’oggi le sfide relative ai veicoli elettrici per quanto riguarda la loro autonomia e le soluzioni per ridurre il consumo energetico stanno diventando sempre più interessanti. I veicoli sovra-attuati, riguardo a questo problema, offrono la possibilità di utilizzare la ridondanza per scegliere l’ingresso di controllo, tra quelli possibili, che minimizza i consumi energetici. A questo proposito, l’obiettivo della ricerca è studiare diverse tecniche per controllare, in tempo reale, un veicolo a guida autonoma sovra-attuato per garantire l’inseguimento della traiettoria e la stabilità con l’obiettivo di minimizzare il consumo energetico. Questo studio si concentra su un veicolo in grado di guidare e sterzare le quattro ruote (4WD, 4WS) in modo indipendente, ed estende il contributo delle precedenti ricerche teoriche fornendo un algoritmo di controllo che deve funzionare in tempo reale su un prototipo di veicolo (RCV-E) sviluppato presso l’ITRL all’interno del KTH, che presenta la sovra-attuazione studiata. A tal fine, l’algoritmo di controllo deve bilanciare la complessità di un sistema a più ingressi, gli obiettivi di allocazione dell’azione di controllo ottimale e l’agilità di funzionamento in tempo reale sul sistema MicroAutoBox II - dSPACE montato sul veicolo. La soluzione proposta è un controllore a due livelli che gestisce separatamente le dinamiche ad alta e bassa frequenza. Il livello superiore è responsabile dell’inseguimento della traiettoria e della minimizzazione dell’energia. Il problema di allocazione viene risolto in due fasi. Un LTV-MPC risolve il problema dell’inseguimento della traiettoria e assegna le forze alle ruote tenendo conto delle perdite di energia agli pneumatici dovute al loro scorrimento longitudinale e laterale. Il secondo passo rialloca le forze longitudinali tra l’asse anteriore e quello posteriore considerando ciascun lato del veicolo in modo indipendente per minimizzare le perdite di energia nei motori. Il livello inferiore è responsabile della trasformazione delle forze alle ruote in coppia e angolo di sterzo; funziona a una più alta frequenza rispetto al livello superiore per tenere conto delle dinamiche veloci delle ruote. Infine, la strategia di controllo viene testata in simulazione per quanto riguarda le prestazioni di inseguimento della traiettoria e di minimizzazione dell’energia, e successivamente su MircoAutoBox II montato sull’RCV-E per valutare le prestazioni in tempo reale.

Page generated in 0.098 seconds