• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Essays on the Predictability and Volatility of Asset Returns

Jacewitz, Stefan A. 2009 August 1900 (has links)
This dissertation collects two papers regarding the econometric and economic theory and testing of the predictability of asset returns. It is widely accepted that stock returns are not only predictable but highly so. This belief is due to an abundance of existing empirical literature fi nding often overwhelming evidence in favor of predictability. The common regressors used to test predictability (e.g., the dividend-price ratio for stock returns) are very persistent and their innovations are highly correlated with returns. Persistence when combined with a correlation between innovations in the regressor and asset returns can cause substantial over-rejection of a true null hypothesis. This result is both well documented and well known. On the other hand, stochastic volatility is both broadly accepted as a part of return time series and largely ignored by the existing econometric literature on the predictability of returns. The severe e ffect that stochastic volatility can have on standard tests are demonstrated here. These deleterious e ffects render standard tests invalid. However, this problem can be easily corrected using a simple change of chronometer. When a return time series is read in the usual way, at regular intervals of time (e.g., daily observations), then the distribution of returns is highly non-normal and displays marked time heterogeneity. If the return time series is, instead, read according to a clock based on regular intervals of volatility, then returns will be independent and identically normally distributed. This powerful result is utilized in a unique way in each chapter of this dissertation. This time-deformation technique is combined with the Cauchy t-test and the newly introduced martingale estimation technique. This dissertation nds no evidence of predictability in stock returns. Moreover, using martingale estimation, the cause of the Forward Premium Anomaly may be more easily discerned.
2

Identification récursive de systèmes continus à paramètres variables dans le temps / Recursive identification of continuous-time systems with time-varying parameters

Padilla, Arturo 05 July 2017 (has links)
Les travaux présentés dans ce mémoire traitent de l'identification des systèmes dynamiques représentés sous la forme de modèles linéaires continus à paramètres variant lentement au cours du temps. La complexité du problème d'identification provient d'une part du caractère inconnu de la loi de variation des paramètres et d'autre part de la présence de bruits de nature inconnue sur les signaux mesurés. Les solutions proposées s'appuient sur une combinaison judicieuse du filtre de Kalman en supposant que les variations des paramètres peuvent être représentées sous la forme d'une marche aléatoire et de la méthode de la variable instrumentale qui présente l'avantage d'être robuste vis à vis de la nature des bruits de mesure. Les algorithmes de type récursif sont développés dans un contexte d'identification en boucle ouverte et en boucle fermée. Les différentes variantes se distinguent par la manière dont est construit la variable instrumentale. Inspirée de la solution développée pour les systèmes linéaires à temps invariant, une construction adaptative de la variable instrumentale est suggérée pour pouvoir suivre au mieux l'évolution des paramètres. Les performances des méthodes développées sont évaluées à l'aide de simulations de Monte Carlo et montrent la suprématie des solutions proposées s'appuyant sur la variable instrumentale par rapport celles plus classiques des moindres carrés récursifs. Les aspects pratiques et d'implantation numérique sont d'une importance capitale pour obtenir de bonnes performances lorsque ces estimateurs sont embarqués. Ces aspects sont étudiés en détails et plusieurs solutions sont proposées non seulement pour robustifier les estimateurs vis à vis du choix des hyper-paramètres mais également vis à vis de leur implantation numérique. Les algorithmes développés sont venus enrichir les fonctions de la boîte à outils CONTSID pour Matlab. Enfin, les estimateurs développés sont exploités pour faire le suivi de paramètres de deux systèmes physiques : un benchmark disponible dans la littérature constitué d'un filtre électronique passe-bande et une vanne papillon équipant les moteurs de voiture. Les deux applications montrent le potentiel des approches proposées pour faire le suivi de paramètres physiques variant lentement dans le temps / The work presented in this thesis deals with the identification of dynamic systems represented through continuous-time linear models with slowly time-varying parameters. The complexity of the identification problem comes on the one hand from the unknown character of the parameter variations and on the other hand from the presence of noises of unknown nature on the measured signals. The proposed solutions rely on a judicious combination of the Kalman filter assuming that the variations of the parameters can be represented in the form of a random walk, and the method of the instrumental variable which has the advantage of being robust with respect to the nature of the measurement noises. The recursive algorithms are developed in an open-loop and closed-loop identification setting. The different variants are distinguished by the way in which the instrumental variable is built. Inspired by the solution developed for time-invariant linear systems, an adaptive construction of the instrumental variable is suggested in order to be able to follow the evolution of the parameters as well as possible. The performance of the developed methods are evaluated using Monte Carlo simulations and show the supremacy of the proposed solutions based on the instrumental variable compared with the more classical least squares based approaches. The practical aspects and implementation issues are of paramount importance to obtain a good performance when these estimators are used. These aspects are studied in detail and several solutions are proposed not only to robustify the estimators with respect to the choice of hyperparameters but also with respect to their numerical implementation. The algorithms developed have enhanced the functions of the CONTSID toolbox for Matlab. Finally, the developed estimators are considered in order to track parameters of two physical systems: a benchmark available in the literature consisting of a bandpass electronic filter and a throttle valve equipping the car engines. Both applications show the potential of the proposed approaches to track physical parameters that vary slowly over time
3

Nonlinear controller synthesis for complex chemical and biochemical reaction systems

Leising, Sophie 02 May 2005 (has links)
The present research study is comprised of two main parts. The first part aims at the development of a systematic system-theoretic framework that allows the derivation of optimal chemotherapy protocols for HIV patients. The proposed framework is conceptually aligned with a notion of continuous-time model predictive control of nonlinear dynamical systems, and results in an optimal way to control viral replication, while maintaining low antiretroviral drug toxicity levels. This study is particularly important because it naturally integrates powerful system-theoretic techniques into a clinically challenging problem with worldwide implications, namely the one of developing chemotherapy patterns for HIV patients that are effective and do not induce adverse side-effects. The second part introduces a new digital controller design methodology for nonlinear (bio)chemical processes, that reflects contemporary necessities in the practical implementation of advanced process control strategies via digital computer-based algorithms. The proposed methodology relies on the derivation of an accurate sampled-data representation of the process, and the subsequent formulation and solution to a nonlinear digital controller synthesis problem. In particular, for the latter two distinct approaches are followed that are both based on the methodological principles of Lyapunov design and rely on a short-horizon model-based prediction and optimization of the rate of“energy dissipation" of the system, as it is realized through the time derivative of an appropriately selected Lyapunov function. First, the Lyapunov function is computed by solving the discrete Lyapunov matrix equation. In the second approach however, it is computed by solving a Zubov-like functional equation based on the system's drift vector field. Finally, two examples of a chemical and a biological reactor that both exhibit nonlinear behavior illustrate the main features of the proposed digital controller design method.

Page generated in 0.073 seconds