Spelling suggestions: "subject:"estimateurs a posteriori"" "subject:"stimateurs a posteriori""
1 |
Estimateurs d’erreur a posteriori résiduels en éléments finis pour la résolution de problèmes d’électromagnétisme en formulations potentielles / Residual a posteriori error estimators in finite elements for the resolution of electromagnetic problems in potential formulationsTang, Zuqi 29 November 2012 (has links)
Ce travail s’intéresse à la résolution numérique par éléments finis des équations de Maxwell en régime quasi-stationnaire et en formulations potentielles. L’objectif poursuivi consiste à développer des estimateurs d’erreur a posteriori résiduels, afin de contrôler l’erreur de discrétisation spatiale, dans le cadre d’applications en régime statique ou en régime dynamique harmonique.La première partie de cette thèse est composée de deux chapitres. Le premier est consacré à la modélisation des phénomènes physiques étudiés et à l’obtention des équations mathématiques en résultant. Dans le second, on présente les estimateurs a posteriori et leur intérêt dans le cadre de la mise en oeuvre de la méthode des éléments finis. On détaille notamment les notions de fiablité et d’efficacité d’un estimateur. La deuxième partie se décompose en trois chapitres. Le premier développe l’estimateur a posteriori dans le cas de la magnétostatique en formulation potentielle vecteur A. Les outils mathématiques nécessaires à l’étude sont en particulier détaillés. L’estimateur obtenu est alors validé sur quelques cas tests académiques. Le deuxième traite de l’estimateur a posteriori pour la formulation magnétodynamique en potentiel A/φ en régime harmonique. Un soin particulier est apporté pour générer une décomposition de Helmholtz ad hoc permettant d’obtenir la fiabilité de l’estimateur. Plusieurs configurations sont traitées en fonction de la position du domaine conducteur dans le domaine de calcul et des conditions aux limites associées. Un test numérique est ensuite effectué. Le troisième chapitre est consacré à l’estimateur d’erreur a posteriori pour la formulation T/Ω en régime harmonique pour le problème de la magnétodynamique, en supposant le domaine conducteur simplement connexe. Similairement à la formulation A/φ, une décomposition de Helmholtz est développée pour établir la fiabilité. Une validation numérique est proposée. Enfin, la troisième partie présente une batterie de tests numériques applicatifs et industriels permettant de tester les estimateurs développés dans des conditions réelles. Celle-ci se termine notamment par une application de EDF R&D ayant pour objet le contrôle non destructif par courant de Foucault de tubes générateurs de vapeur. / We are interested in resolving the Maxwell equations in the case of quasi-stationary and potential formulations when the finite element method is used. The aim of this work is to develop residual-based a posteriori estimators to control the spatial discretization error in magnetostatic and magnetodynamic problems. The first part is decomposed in two chapters. In the first one, the modeling of the physical phenomena involved are proposed and the mathematical equations are derived. Then, in the second one, the definition of the a posteriori estimators and their interest are presented in the context of the finite element method. The particular notions of reliability and efficiency of an estimator are presented. The second part can be decomposed into three chapters. In the first one, a residualbased a posteriori estimator for the vector potential formulation A in the case of magnetostatic problems is developed. Some necessary mathematical tools for the study are particularly detailed. The estimator is then validated by some academic tests. In the second chapter, a residual-based a posteriori estimator for the A/φ magnetodynamic harmonic formulation is developed. An ad-hoc Helmholtz decomposition is derived to obtain the reliability of the estimator. Several configurations are considered according to the position of the conductor domain in the computational domain as well as boundary conditions used. A numerical test is then performed. In the third chapter, a residual-based a posteriori estimator is derived for the T/Ω magnetodynamic harmonic formulation, when the conductor domain is simply connected. Similarly to the A/φ formulation, an ad-hoc Helmholtz decomposition is developed to establish the reliability. A numerical validation is proposed.Finally, in the third part, a set of numerical experiments and industrial applications are presented to evaluate our estimators. It ends with a particular application of EDF R&D focusing on the eddy current non-destructive evaluation of steam generator tubes.
|
2 |
Méthodes d’éléments finis a posteriori pour les équations de Reissner-Mindlin / Finite element method for the Reissner-Mindlin systemVerhille, Emmanuel 04 July 2012 (has links)
Ce travail est consacré à l’étude d’estimateurs d'erreur a posteriori de type flux équilibrés et résiduels pour la résolution des équations de Reissner-Mindlin par la méthode des éléments finis. Le mémoire débute par l'introduction du problème aux limites et de son analyse de convergence a priori par la méthode des éléments finis. Nous construisons alors pour une discrétisation conforme un estimateur a posteriori de type flux équilibrés fiable, efficace et robuste en l'épaisseur de la plaque t. Nous obtenons finalement une constante multiplicative égale à 1 pour la fiabilité. Des tests numériques illustrent nos résultats pour différents maillages. Puis nous abordons le cas d’une discrétisation non-conforme, où nous proposons un estimateur a posteriori de type résiduel, utilisant une régularisation de la solution discrète. Des tests numériques illustrent également nos résultats. La suite du travail reprend la discrétisation conforme en construisant un estimateur a posteriori défini à partir de la résolution de problèmes localisés sur les patchs de la triangulation, menant à un choix plus consistant avec le problème aux limites. Le dernier chapitre est consacré à l'estimation a posteriori pour le problème aux valeurs propres de Reissner-Mindlin. L’estimateur obtenu est fiable et efficace pour la norme de l'erreur entre les vecteurs propres, permettant également de majorer l’erreur commise entre les valeurs propres. Des tests numériques illustrent nos résultats. / This work is devoted to the study of equilibrated fluxes and residual a posteriori error estimators for the finite element resolution of the Reissner-Mindlin system. This report begins by the introduction of the boundary value problem and of its a priori convergence analysis in the finite element method context. Then, an equilibrated fluxes a posteriori estimator is built for a conform discretization, which is proven to be reliable, efficient and robust on the plate thickness t. We finally obtain a multiplicative constant equal to 1 for the reliability. Numerical tests illustrate our results on different meshes. Then, we address the non-conforming discretization case, where a residual a posteriori estimator is proposed using a regularisation of the discrete solution. Numerical tests also illustrate our results. Next we come back to the conform discretization by building an a posteriori estimator defined from localised problems resolution on stars, leading to a consistent choice with the boundary value problem. The last chapter is devoted to an a posteriori estimation for the Reissner-Mindlin eigenvalues problem. The obtained estimator is reliable and efficient for the error norm between the eigenvectors, also allowing to evaluate the error between the eigenvalues. Numerical tests illustrate our results.
|
3 |
Estimateurs d'erreur a posteriori pour les équations de Maxwell en formulation temporelle et potentielle / A posteriori error estimators for the temporal and potential Maxwell's equationsTittarelli, Roberta 27 September 2016 (has links)
Cette thèse porte sur le développement d’estimateurs d'erreur a posteriori pour la résolution numérique par éléments finis de problèmes en électromagnétisme basse fréquence. On s’intéresse aux formulations en potentiels (A-φ et T-Ω) des équations de Maxwell en régime quasi-stationnaire, pour le cas harmonique ou temporel. L'enjeu consiste à développer des outils numériques mathématiquement robustes, exploitables dans un code de calcul industriel, notamment le Code_Carmel3D (EDF R&D), permettant d'estimer l'erreur de discrétisation spatio-temporelle et de pouvoir ainsi améliorer la précision des calculs. On prouve la fiabilité, assurant le contrôle de l’erreur. On prouve également dans certains cas l’efficacité locale, permettant de repérer les zones du maillage dans lesquelles l’erreur est la plus importante, et de mettre ainsi en œuvre des stratégies de raffinement adaptatif. L'équivalence globale entre l'erreur en norme énergétique et l'estimateur est en général assurée. Les estimateurs obtenus sont finalement utilisés pour des simulations physiques/industrielles par le Code_Carmel3D. / This thesis focus on the developement of a posteriori error estimators for the finite element numerical resolution of low frequency electromagnetic problems. We are interested in two potential formulations of the Maxwell's equations in the quasi-static approximation, known as A-φ et T-Ω formulations, for both harmonic and temporal regimes. The challenge consists in developing numerical tools mathematically robust, usable in an industrial code allowing the estimation of the spatio-temporal error discretisation and the improvement of the quality and the cost of the computation. We prove the reliability of the proposed error estimators, which ensures an upper bound for the error in the energy norm. In some cases we also prove the local efficicency of the estimators, which allows to detect the zones where the error is the highest, so that an adaptive remeshing process can be set up. Anyway, the global equivalence between the energy error norm and the estimator is derived. The developed error estimators are finally used for physical and industrial numerical simulations in Code_Carmel3D (EDF R&D).
|
4 |
Schémas numériques instationnaires pour des écoulements multiphasiques multiconstituants dans des bassins sédimentairesNadau, Lionel 22 September 2003 (has links) (PDF)
Un bassin sédimentaire est un milieu poreux de grande dimension (plusieurs dizaines de kilomètres de long et de large pour une profondeur d'environ cinq kilomètres) qui évolue au cours du temps par les effets de compaction et de sédimentation. Au cours de cette évolution, des hydrocarbures vont se former et s'écouler dans le bassin. On établit alors un modèle permettant de simuler cette évolution de bassin ainsi que la création, la migration et le piégeage des hydrocarbures dans des roches appelées roches magasins. Ces phénomènes se déroulant sur des centaines de millions d'années, on s'est attaché à étudier principalement une discrétisation temporelle de ces équations. On a ainsi mis en avant un raffinement local du pas de temps dont le principe est de recalculer la solution sur une zone jugée "mauvaise". A l'extérieure de cette zone, la solution est admissible. La difficulté vient de la détermination de la zone qui doit - être suffisamment "grande" pour avoir une bonne qualité de la solution, mais suffisamment "petite" pour obtenir un gain calcul. Les estimateurs a posteriori permettent de contourner cette difficulté. On a donc entrepris une étude théorique de ces estimateurs a posteriori dans le cas des équations linéaires elliptique et parabolique. Des simulations numériques montrent l'efficacité de ces estimateurs dans des cas académiques.
|
Page generated in 0.0936 seconds