Spelling suggestions: "subject:"destimation a posteriori"" "subject:"coestimation a posteriori""
1 |
Eléments finis adaptatifs pour l'équation des ondes instationnaire / Adaptive finite elements for the time-dependent wave equationGorynina, Olga 22 February 2018 (has links)
La thèse porte sur l’analyse d’erreur a posteriori pour la résolution numérique de l’équation linéaire des ondes , discrétisée en temps par le schéma de Newmark et en espace par la méthode des éléments finis. Nous adoptons un choix particulier de paramètres pour le schéma de Newmark, notamment β = 1/4, γ = 1/2, qui assure que la méthode est conservative en énergie et d’ordre deux en temps. L’estimation d’erreur a posteriori, d’un ordre optimal en temps et en espace, est élaborée à partir de la discrétisation complète. L’erreur est mesurée dans une norme qui découle naturellement de la physique: H1 en espace et Linf en temps. Nous proposons d’abord un estimateur dit «à 3 points» qui fait intervenir la solution discrète en 3 points successifs du temps à chaque pas de temps. Cet estimateur fait appel à une approximation du Laplacien de la solution discrète qui doit être calculée à chaque pas de temps, en résolvant un problème auxiliaire d'éléments finis. Nous proposons ensuite un estimateur d’erreur alternatif qui permet d’éviter ces calculs supplémentaires: l’estimateur dit «à 5 points» puisqu’il met en jeu le schéma des différences finies d’ordre 4, qui fait intervenir la solution discrète en 5 points successifs du temps à chaque pas de temps. Nous démontrons que nos estimateurs en temps sont d’ordre optimal pour des solutions suffisamment lisses, sur des maillages quasi-uniformes en espace et uniformes en temps, en supposant que les conditions initiales soient discrétisées à l’aide de la projection elliptique. La trouvaille la plus intéressante de cette analyse est le rôle capitale de cette discrétisation : des discrétisations standards pour les conditions initiales, telles que l’interpolation nodale, peuvent être néfastes pour les estimateurs d’erreur en détruisant leur ordre de convergence, bien qu’elles fournissent des solutions numériques tout à fait acceptables. Des expériences numériques prouvent que nos estimateurs d’erreur sont d’ordre optimal en temps comme en espace, même dans les situations non couvertes par la théorie. En outre, notre analyse a posteriori s’étend au schéma de Newmark d’ordre deux plus général (γ = 1/2). Nous présentons des comparaisons numériques entre notre estimateur à 3 points généralisé et l’estimateur sur des grilles décalées, proposé par Georgoulis et al. Finalement, nous implémentons un algorithme adaptatif en temps et en espace basé sur notre estimateur d’erreur a posteriori à 3 points. Nous concluons par des expériences numériques qui montrent l’efficacité de l’algorithme adaptatif et révèlent l’importance de l’interpolation appropriée de la solution numérique d’un maillage à un autre, surtout vis à vis de l’optimalité de l’estimation d’erreur en temps. / This thesis focuses on the a posteriori error analysis for the linear second-order wave equation discretized by the second order Newmark scheme in time and the finite element method in space. We adopt the particular choice for the parameters in the Newmark scheme, namely β = 1/4, γ = 1/2, since it provides a conservative method with respect to the energy norm. We derive a posteriori error estimates of optimal order in time and space for the fully discrete wave equation. The error is measured in a physically natural norm: H1 in space, Linf in time. Numerical experiments demonstrate that our error estimators are of optimal order in space and time. The resulting estimator in time is referred to as the 3-point estimator since it contains the discrete solution at 3 points in time. The 3-point time error estimator contains the Laplacian of the discrete solution which should be computed via auxiliary finite element problems at each time step. We propose an alternative time error estimator that avoids these additional computations. The resulting estimator is referred to as the 5-point estimator since it contains the fourth order finite differences in time and thus involves the discrete solution at 5 points in time at each time step. We prove that our time estimators are of optimal order at least on sufficiently smooth solutions, quasi-uniform meshes in space and uniform meshes in time. The most interesting finding of this analysis is the crucial importance of the way in which the initial conditions are discretized: a straightforward discretization, such as the nodal interpolation, may ruin the error estimators while providing quite acceptable numerical solution. We also extend the a posteriori error analysis to the general second order Newmark scheme (γ = 1/2) and present numerical comparasion between the general 3-point time error estimator and the staggered grid error estimator proposed by Georgoulis et al. In addition, using obtained a posteriori error bounds, we implement an efficient adaptive algorithm in space and time. We conclude with numerical experiments that show that the manner of interpolation of the numerical solution from one mesh to another plays an important role for optimal behavior of the time error estimator and thus of the whole adaptive algorithm.
|
2 |
Etude de schemas numeriques pour des modeles de propagation d'ondes en milieux heterogenesSei, Alain 02 October 1991 (has links) (PDF)
Les methodes d'inversion par moindres carres necessitent la simulation de propagation d'ondes modelisees par des equations lineaires. C'est dans cette partie modelisation que se situe la majeure partie de notre travail qui comporte quatre chapitres. Dans le premier chapitre, nous etudions l'inversion d'un milieu localement perturbe, c'est a dire que nous recherchons une heterogeneite de forme donnee dans une matrice homogene. Nous montrons dans ce cas simple l'influence de la frequence de la source sur la non-linearite de la fonction cout. Dans le second chapitre, nous introduisons et analysons une famille de schemas numeriques pour l'equation des ondes acoustiques en milieu homogene. Ces schemas d'ordre sont deux ou quatre en temps et d'ordre quelconque en espace. Nous avons estime le cout informatique des simulations et preconise un choix du nombre de points par longueur d'onde et du nombre de points par periode. Ceci donne alors les pas d'espace et de temps. Dans le troisieme chapitre nous etudions la stabilite et la precision de cette famille de schemas numeriques en milieu heterogene. Nous obtenons des resultats quelque soit l'heterogeneite du milieu, et donnons l'ordre d'approximation de ces schemas numeriques en milieux heterogenes. Nous etudions egalement les condition absorbantes eponges. Dans le dernier chapitre nous nous sommes interesse a une estimation d'erreur a posteriori pour l'equation des ondes en milieu unidimensionnel. Ces estimations sont generalisables au cas bidimensionnel. Elles permettent de mesurer l'erreur commise sur la solution a l'aide de quantites calculables; donc on peut par procedure adaptive regler les pas de temps et d'espace.
|
3 |
Développement et analyse de méthodes de volumes finisOmnes, Pascal 04 May 2010 (has links) (PDF)
Ce document synthétise un ensemble de travaux portant sur le développement et l'analyse de méthodes de volumes finis utilisées pour l'approximation numérique d'équations aux dérivées partielles issues de la physique. Le mémoire aborde dans sa première partie des schémas colocalisés de type Godunov d'une part pour les équations de l'électromagnétisme, et d'autre part pour l'équation des ondes acoustiques, avec une étude portant sur la perte de précision de ce schéma à bas nombre de Mach. La deuxième partie est consacrée à la construction d'opérateurs différentiels discrets sur des maillages bidimensionnels relativement quelconques, en particulier très déformés ou encore non-conformes, et à leur utilisation pour la discrétisation d'équations aux dérivées partielles modélisant des phénomènes de diffusion, d'électrostatique et de magnétostatique et d'électromagnétisme par des schémas de type volumes finis en dualité discrète (DDFV) sur maillages décalés. La troisième partie aborde ensuite l'analyse numérique et les estimations d'erreur a priori et a posteriori associées à la discrétisation par le schéma DDFV de l'équation de Laplace. La quatrième et dernière partie est consacrée à la question de l'ordre de convergence en norme $L^2$ de la solution numérique du problème de Laplace, issue d'une discrétisation volumes finis en dimension un et en dimension deux sur des maillages présentant des propriétés d'orthogonalité. L'étude met en évidence des conditions nécessaires et suffisantes relatives à la géométrie des maillages et à la régularité des données du problème afin d'obtenir la convergence à l'ordre deux de la méthode.
|
Page generated in 0.1464 seconds