• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces de Besov / Harmonic analysis on graphs and Lie groups : quadratic functionals, Riesz transforms and Besov spaces

Feneuil, Joseph 10 July 2015 (has links)
Ce mémoire est consacré à des résultats d'analyse harmonique réelle dans des cadres géométriques discrets (graphes) ou continus (groupes de Lie).Soit $\Gamma$ un graphe (ensemble de sommets et d'arêtes) muni d'un laplacien discret $\Delta=I-P$, où $P$ est un opérateur de Markov.Sous des hypothèses géométriques convenables sur $\Gamma$, nous montrons la continuité $L^p$ de fonctionnelles de Littlewood-Paley fractionnaires. Nous introduisons des espaces de Hardy $H^1$ de fonctions et de $1$-formes différentielles sur $\Gamma$, dont nous donnons plusieurs caractérisations, en supposant seulement la propriété de doublement pour le volume des boules de $\Gamma$. Nous en déduisons la continuité de la transformée de Riesz sur $H^1$. En supposant de plus des estimations supérieures ponctuelles (gaussiennes ou sous-gaussiennes) sur les itérées du noyau de l'opérateur $P$, nous obtenons aussi la continuité de la transformée de Riesz sur $L^p$ pour $1<p<2$.Nous considérons également l'espace de Besov $B^{p,q}_\alpha(G)$ sur un groupe de Lie unimodulaire $G$ muni d'un sous-laplacien $\Delta$. En utilisant des estimations du noyau de la chaleur associé à $\Delta$, nous donnons plusieurs caractérisations des espaces de Besov, et montrons une propriété d'algèbre pour $B^{p,q}_\alpha(G) \cap L^\infty(G)$, pour $\alpha>0$, $1\leq p\leq+\infty$ et $1\leq q\leq +\infty$. Les résultats sont valables en croissance polynomiale ou exponentielle du volume des boules. / This thesis is devoted to results in real harmonic analysis in discrete (graphs) or continuous (Lie groups) geometric contexts.Let $\Gamma$ be a graph (a set of vertices and edges) equipped with a discrete laplacian $\Delta=I-P$, where $P$ is a Markov operator.Under suitable geometric assumptions on $\Gamma$, we show the $L^p$ boundedness of fractional Littlewood-Paley functionals. We introduce $H^1$ Hardy spaces of functions and of $1$-differential forms on $\Gamma$, giving several characterizations of these spaces, only assuming the doubling property for the volumes of balls in $\Gamma$. As a consequence, we derive the $H^1$ boundedness of the Riesz transform. Assuming furthermore pointwise upper bounds for the kernel (Gaussian of subgaussian upper bounds) on the iterates of the kernel of $P$, we also establish the $L^p$ boundedness of the Riesz transform for $1<p<2$.We also consider the Besov space $B^{p,q}_\alpha(G)$ on a unimodular Lie group $G$ equipped with a sublaplacian $\Delta$.Using estimates of the heat kernel associated with $\Delta$, we give several characterizations of Besov spaces, and show an algebra property for $B^{p,q}_\alpha(G) \cap L^\infty(G)$ for $\alpha>0$, $1\leq p\leq+\infty$ and $1\leq q\leq +\infty$.These results hold for polynomial as well as for exponential volume growth of balls.

Page generated in 0.0867 seconds