Spelling suggestions: "subject:"ethylethylene propylene tiene ekonomer"" "subject:"ethylethylene propylene tiene amonomer""
1 |
Analyse morphologique des champs de cavités dans un élastomère sous décompression d'hydrogène : Influence des conditions de décompression et effets d'interaction / Morphological analyses of cavity fields in an elastomer under hydrogen decompression : effects of decompression condition and interaction effectsKane-Diallo, Ousseynou 30 November 2015 (has links)
La morphologie de l’endommagement par cavitation est analysée dans un EPDM non chargé sous différentes conditions de décompression d’hydrogène. Les expériences permettent devisualiser l’évolution de l’endommagement au cours du temps. Les images obtenues sont traitées pour obtenir l’instant d’apparition, le nombre et la distribution de taille des cavités au cours du temps. Elles permettent également de suivre les cinétiques de croissance / décroissance des plus grosses cavités. Le tracé de covariogrammes permet de quantifier la distribution spatiale de ces cavités. L’analyse de cet ensemble de données porte donc sur deux échelles :celle de cavités indépendantes et celle de champs de cavités. A l’échelle de la cavité, les cinétiques expérimentales sont corrélées à des calculs numériques par Eléments Finis en conditions diffuso-mécaniques couplées sur une cellule élémentaire contenant une ou deuxcavité(s). Ces calculs permettent par ailleurs d’éclairer les évolutions locales des champs mécaniques et de concentration de gaz, ainsi que les mécanismes d’interaction entre cavités voisines. Les covariogrammes fournissent des éléments pour estimer les caractéristiques d’un Volume Elémentaire Représentatif (VER) (taille, isotropie) et discuter la représentativité d’untel modèle numérique selon les conditions de décompression. A l’échelle des champs de cavités,les conditions de décompression influencent la répartition spatiale. Le nombre et la taille des cavités augmentent avec la pression de saturation et/ou la vitesse de décompression, et une seconde population de petites cavités apparaît autour des premières sous conditions sévères.L’homogénéité et l’isotropie de la distribution à l’échelle macroscopique sont étudiées. Il est finalement montré que la morphologie des champs de cavités évolue au cours de cycles successifs. Cette analyse fournit des informations pour discuter et renseigner le cadre et les ingrédients de modèles d’endommagement. / The morphology of cavitation is analyzed in an unfilled EPDM under different hydrogen decompression conditions. The experimental device allows a time-resolved tracking of the evolution of damage. Images are processed to obtain the onset time, the number and sizedistribution of cavities over time, and the inflation / deflation kinetics of the biggest cavities.Covariograms quantifies the spatial distribution of cavity fields. The analysis is thus led at two scales: that of independent cavities and that of the full cavity fields. At the cavity scale, kineticsis shown to be identical for independent cavities but different between inflation and deflation.Experimental kinetics is compared to that issued from Finite Element calculations in a cell containing one or two cavities, in coupled diffuso-mechanical conditions. Calculationshighlight the evolution of local mechanical and gas content fields, as well as interaction effects between close cavities. At the scale of cavity fields, the spatial distribution is influenced by the decompression conditions. The number and size of cavities increase with saturation pressure and/or decompression rate and a second population of small cavities is nucleated around the first one under severe decompression conditions. The homogeneity and isotropy of the distribution at macroscopic scale are studied. The influence of cycling on the evolution of cavitation morphology is addressed in the final part. It was finally found that the morphology of cavity fields evolves during successive cycles. The analysis provides information to discuss and to inquire the framework and ingredients of damage models.
|
2 |
In-Situ Investigation of Cavity Nucleation and Growth in Hydrogen-Exposed Epdm during Decompression / Caractérisation in-situ de la nucléation et croissance de cavités sous décompression dans un EPDM exposé à de fortes pressions d'hydrogèneFazal, Mahak 04 December 2019 (has links)
Le domaine de recherche concerne l’endommagement par cavitation des élastomères exposés à de fortes pressions de gaz diffusant. Ce phénomène résulte de l’expansion locale du gaz préalablement absorbé, lorsque la désorption hors du polymère est trop lente par rapport au chargement imposé. Dans le cas de l’hydrogène qui nous intéresse ici, l’enjeu est le développement de matériaux polymères performants pour les structures de stockage et de distribution d’hydrogène gazeux hyperbare. En conditions d’usage, ces matériaux sont exposés à de fortes pressions d’hydrogène qui diffuse en leur sein et génèrent ensuite de forts endommagements lorsque la pression hydrostatique est relâchée. Les études de laboratoire sur ce sujet restent peu nombreuses, a fortiori sous environnement hydrogène. Sur le plan expérimental, ceci s’explique par la délicate manipulation de l’hydrogène et par le contexte des fortes pressions. Sur le plan de la simulation numérique, un verrou important est lié aux couplages forts entre diffusion et mécanique dans la résolution de l’équilibre de la cavité à chaque instant de son évolution. Cette thèse vise à mieux comprendre le mécanisme élémentaire de formation, puis de croissance et de coalescence des cavités, isolées ou en proche voisinage. Dans ce dernier cas, une éventuelle interaction doit effectivement être caractérisée pour éclairer la coalescence et la transition vers des fissures macroscopiques. Le travail a été mené sur série d’Ethylène Propylène Diène Monomer (EPDM) non-renforcés, avec une densité de points de réticulation variable, exposés à des pressions allant jusqu’à 30 MPa. Le volet expérimental s'appuie sur deux des techniques expérimentales in situ les plus récentes. La diffusion des rayons X aux petits angles (SAXS) vise à caractériser les hétérogénéités du système réseau élastomère – hydrogène à l'échelle submicronique, et éventuellement à détecter les premiers stades de cavitation. Dans la gamme des faibles pressions accessible sous environnement hydrogène, les hétérogénéités ne sont pas assez marquées pour définir plus qu'une distance de corrélation, qui varie très peu comparativement au matériau non exposé. Après exposition à une pression plus élevée (30 MPa), une augmentation de la distance de corrélation est observée, révélant une modification de l'hétérogénéité de la matrice, irréversible même après désorption complète de l'échantillon. À l’échelle micronique, des expériences de tomographie X in-situ (sous des pressions allant jusqu’à 12 MPa) fournissent des vues 3D résolues en temps des cavités, pendant et après décompression. Ces expériences ont permis de mieux comprendre la cinétique de croissance des cavités dans différentes conditions aux limites locales (dans le volume de l’échantillon, à proximité d'autres cavités, près d'une surface libre) et de les interpréter en regard des propriétés de diffusion de l'échantillon lui-même. Plusieurs populations de cavités, présentant des comportements différents, ont ainsi pu être distinguées en fonction de leur distance à la surface libre de l'échantillon, en lien avec la désorption globale de l’échantillon. Comparativement à cet effet de bord libre, la présence d’une autre cavité en proche voisinage (i.e. à une distance bord à bord supérieure ou égale à 30μm) n’a qu’une influence minime. Les résultats suggèrent que la croissance de la cavité est un processus très local. Dans un contexte diffuso-mécanique fortement couplé, l’interprétation des mécanismes se heurte à l’impossibilité d’accéder expérimentalement aux champs mécaniques et de concentration de gaz. Les codes éléments finis existants rencontrent des problèmes de convergence que le code interne Foxtrot développé à l’Institut Pprime tente de surmonter. Dans une dernière partie exploratoire de la thèse, il a été mis à profit pour comparer les gradients générés par une paire de cavités comparativement à une cavité isolée. / The optimum design and formulation of seals used in hydrogen transport system is crucial for the purposes of safety of operation and well as economic sustainability of hydrogen as energy carrier. The exposure of the sealing materials to hydrogen and subsequent decompression causes cavitation damage. The studies so far on this subject have been few due to the strong limitations arising from the safety issues related to hydrogen testing in laboratory conditions. This study addresses the cavitation in Ethylene Propylene Diene Rubber (EPDM) due to pressure release after exposure to high-pressure hydrogen up to 30 MPa. Three different unfilled EPDM with variable cross-link density were investigated. The study was based on some of the newest in-situ experimental techniques which allow a time-resolved tracking of the evolution of damage. On one side, in-situ SAXS (Small Angle X-ray Scattering) tests of hydrogen-exposed EPDM were aimed at the characterisation of EPDM at submicron scale as a function of network heterogeneity and for tracking the possible onset of distinguishable cavities. At the low pressure range accessible with the device, heterogeneities were not marked enough to define more than a correlation length that was significantly changed compared the unexposed material, whatever the cross-link density. After the exposure at higher pressure (30 MPa) a change in correlation length was observed corresponding to the change in heterogeneity of the matrix which was found to be non-reversible even after full desorption of the sample. At a higher scale, in-situ X-ray tomography was used to provide time-resolved 3D views of damage during and after hydrogen pressure release. These experiments provided insight into the growth kinetics of cavities in different local boundary conditions (within the bulk, close to other cavities, close to a free surface) correlated with the diffusion characteristics of the sample itself. Classification of cavities as bulk and edges cavities was possible with respect with different kinetics depending on their proximity to the free surface of the sample. This could be correlated with the diffusion characteristics of the material. The dependence of kinetics of cavities on the proximity of another cavity was found to be trivial at the scale investigated (above 30 μm between cavity borders) suggesting that growth is a very local process. The previous studies have clarified that the cavitation in rubber is a coupled diffuso-mechanical phenomenon and so far, the numerical tools available have not addressed the problem as such. Therefore, the development of a numerical tool aimed at solving such coupled problems has also been addressed in the present work. This numerical tool called Foxtrot, developed at Institut PPRIME, is in the early stages of development but is a crucial step towards the more realistic simulation of this phenomenon of cavitation. In this fully coupled diffuso-mechanical context, the interpretation of mechanisms is highly limited by the lack of experimental access to the mechanical and gas content fields. Commercial Finite Element codes face convergence problems that the internal code developed at the Pprime Institute (Foxtrot) is trying to overcome. In the last exploratory part of the thesis, the code was used to as a step towards a more realistic simulation of the phenomenon. In particular, gradients around a pair of cavities were compared to those obtained around an isolated cavity.
|
3 |
Obtenção e caracterização de compostos elastoméricos a base de EPDM carregados com barita para serem empregados na fabricação de vestimentas para proteção radiológicaCâmara, Jéssica Rodrigues 18 March 2011 (has links)
Made available in DSpace on 2016-03-15T19:36:30Z (GMT). No. of bitstreams: 1
Jessica Rodrigues Camara.pdf: 4063408 bytes, checksum: d160fbb4a019fe268fcee175023d69fd (MD5)
Previous issue date: 2011-03-18 / In this work, it was studied the physical-mechanical properties of elastomers based on ethylene-propylene-diene monomer copolymer (EPDM) with barite addition, witch is a filler in powder form, opening way for application of these composites in the protection and shield against X radiation, in the form of aprons. These aprons come to substitute the elastomeric ones with lead filler in ergonomic and economically advantageous conditions. Elastomeric composites with different barite concentrations were studied: 50, 75, 100, 125 and 150phr (parts per hundred of ruber). Among the studied properties are distinguished: tensile strength, module strength, tear strength, compression set, hardness, fluid absorption, morphologic analysis, X-ray attenuation and equivalent thickness of attenuation in Pb. The results showed
that all the compositions present a good dispersion of the filler in the matrix. It was observed that the increase of the barite concentration provokes an increase in the X-ray attenuation, equivalent thickness of attenuation in Pb, hardness, tensile strength, elasticity module, tear strength and in the compression set of composites, as well as a decrease in the oil absorption. / Neste trabalho estudou-se as propriedades dos elastômeros a base do copolímero de etilenopropileno-dieno monômero (EPDM) com a adição de barita, que é uma carga em pó, abrindo caminho para aplicação destes compostos na proteção e blindagem contra a radiação X, na forma de aventais, em substituição dos aventais a base de elastômero carregado com chumbo em condições. Foram estudados compostos elastoméricos com diferentes concentrações de barita: 50, 75, 100, 125 e 150phr (partes por 100 partes de borracha). Entre as propriedades estudadas destacam-se: resistência à tração, módulo sob tração, resistência ao rasgo, deformação permanente à compressão, dureza, absorção de fluído, análise morfológica, atenuação de raios X e espessura equivalente de atenuação em Pb. Os resultados mostraram que todas as composições apresentam uma boa dispersão da carga na matriz. Observou-se que com o aumento da concentração de barita há um aumento na atenuação de raios X, na espessura equivalente de atenuação em Pb, na dureza, na resistência à tração, no módulo de elasticidade, na resistência ao rasgo, na deformação permanente sob compressão dos compostos, bem como um decréscimo na absorção de óleo.
|
4 |
Propriétés mécaniques et dégradation des élastomères EPDM chargés ATH / Mechanical properties and degradation of ATH filled EPDMDe Almeida, André 19 May 2014 (has links)
Les EPDM (Ethylène Propylène Diène Monomère) sont employés comme isolants des câbles électriques des centrales nucléaires. En raison de l’environnement radioactif, ils se dégradent plus rapidement qu’en environnement classique. La détermination de leur durée de vie est donc un enjeu industriel important. Pour y parvenir, ce travail a d’abord consisté à déterminer l’influence de la composition des EPDM sur leurs cinétiques de dégradation. Ainsi, deux EPDM de composition chimique différente ont été irradiés sous rayonnement en présence d’oxygène. Les suivis de la fraction soluble et de la densité de chaines actives en fonction de la dose, ont permis de mettre en évidence une dégradation par réticulation et coupures de chaines. A partir de modèles statistiques, les cinétiques de ces deux processus ont pu être estimées : la réticulation dépend de la proportion en ENB résiduels tandis que les coupures de chaines sont indépendantes de la composition chimique et du degré de réticulation initial. De plus, au - delà d’une certaine dose, les nœuds de réticulation semblent progressivement détruits. Nous nous sommes ensuite intéressés aux conséquences de l’irradiation sur les propriétés mécaniques et ce, d’abord à 80°C, pour s’affranchir de la présence de cristallites. Si dans tous les cas, l’irradiation conduit à une décroissance de la contrainte à la rupture, nos matériaux montrent une déformation à rupture qui augmente avec la dose contrairement aux matériaux de Planès et al. Pour s’affranchir du rôle des hétérogénéités sur l’initiation de fissure, les propriétés mécaniques d’éprouvettes entaillées ont ensuite été étudiées. L’énergie de déchirement est corrélée à l’énergie de rupture des matériaux entaillés et peut être décrite par le modèle de Lake et Thomas, à condition de prendre en compte la longueur réelle entre nœuds de réticulation des matériaux irradiés. Aussi, les propriétés en rupture de tous les matériaux sont améliorées quand ils sont étudiés à 25°C et la présence de cristallites masque les conséquences de la dégradation ; cet effet est ici très marqué en raison d’une importante chimie - cristallisation. Des EPDM chargés ATH ont alors été étudiés. Nos résultats confirment une accélération de la dégradation par les ATH, dépendant de la surface spécifique des charges. La compréhension des propriétés en rupture des composites s’avère complexe car la rupture peut être entrainée par divers processus en compétition. L’évolution des propriétés mécaniques des composites testés à 25°C est, comme pour la matrice pure, dépendante de l’évolution de la cristallinité et des propriétés de la phase amorphe. Enfin, ce travail remet en cause la pertinence des critères de durée de vie actuellement utilisés dans l’industrie. Les énergies de rupture étant plus directement corrélées aux paramètres microstructuraux, ne faudrait-il pas plutôt considérer ce paramètre comme critère? / EPDM (EThylene Propylene Diene Monomer) are used as insulation for electrical cables in nuclear plants. Because of the radiative environment, the degradation of these cables is accelerated and a strong industrial challenge consists in the prediction of the cables lifetime. To address this crucial industrial concern, we first looked into the influence of the chemical composition of EPDM on their kinetics of degradation. To do so, two EPDM with different chemical compositions have been irradiated under radiations and in the presence of oxygen. The soluble fraction and the active chain density have been monitored as a function of the irradiation dose, and revealed the degradation by cross-linking and chain scissions. Furthermore, the kinetics of these mechanisms have been estimated based on statistical models: the cross-linking kinetics depends on the residual ENB content while the chain scission kinetics vary neither with the chemical composition nor the initial cross-linking degree. Moreover, beyond an irradiation dose, the cross-links are progressively broken. The mechanical performances were then studied at 80°C to prevent crystallinity. If the irradiation induces a decrease of the stress at break, the materials show an increase of the strain at break conversely to the EPDM systems studied by Planès et al. The mechanical properties of notched samples have then been employed in order prevent heterogeneities driven crack initiation. The tearing energy measured was correlated with the failure energy of notched samples andcan be described by the Lake and Thomas model with account for the real length between cross-links. The same study has then been performed at 25°C where the properties at break are seen to improve. Such improvements despite irradiation confirm that crystallites attenuate the degradation. This effect is more pronounced for the current set of materials because of a strong chemi-crystallisation. The addition of ATH fillers has been studied as well, showing an acceleration of the matrix degradation with the specific surface of the fillers. The understanding of the mechanical properties at break of filled materials seems complex because the failure can be obtained by various competing processes. Nevertheless, the matrix chemical nature can be mentioned as an important factor since the difference between the matrix mechanical properties and the matrix-filler interface properties will trigger the creation of macro-defects at the origin of failure. As for the neat matrix, the evolution of the composites mechanical properties tested at 25°C depends on the evolutions of both the crystallinity and the amorphous phase. More generally, this work questions the relevance of the actual lifetime criterion used in the industry. The energies at break are more directly correlated to the microstructural parameters and thus could correspond to a relevant criteria for predicting these systems lifetime.
|
Page generated in 0.1022 seconds