• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 14
  • 12
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 17
  • 14
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Reconstruction de pare-brises

Dion-St-Germain, Antoine 09 1900 (has links)
Ce mémoire présente une méthode de reconstruction de la surface d’un pare-brise à partir d’une image observée au travers de celui-ci. Cette image est déformée, car les rayons lumineux traversant le pare-brise subissent deux réfractions : une de chaque côté du verre. La déformation de l’image est dépendante de la forme du pare-brise, c’est donc cette donnée qui est utilisée pour résoudre le problème. La première étape est la construction d’un champ de vecteurs dans l’espace ambiant à partir des déviations des rayons lumineux passant par le pare-brise. Elle repose sur la loi de la réfraction de Snell-Descartes et sur des hypothèses simplificatrices au sujet de la courbure et de l’épaisseur du pare-brise. Le vecteur en un point de ce champ correspond à une prédiction du vecteur normal à la surface, sous l’hypothèse que celle-ci passe par le point en question. La deuxième étape est de trouver une surface compatible avec le champ de vecteurs obtenu. Pour y arriver, on formule un problème de minimisation où la donnée minimisée est la différence entre les vecteurs normaux à la surface et ceux construits à partir des mesures du système d’inspection. Il en résulte une équation d’Euler-Lagrange non linéaire à laquelle on impose des conditions de Dirichlet. Le graphe de la solution à ce problème est alors la surface recherchée. La troisième étape est une méthode de point fixe pour résoudre l’équation d’Euler-Lagrange. Elle donne une suite d’équations de Poisson linéaires dont la limite des solutions respecte l’équation non linéaire étudiée. On utilise le théorème du point fixe de Banach pour obtenir des conditions suffisantes d’existence et d’unicité de la solution, qui sont aussi des conditions suffisantes pour lesquelles la méthode de point fixe converge. / This Master’s thesis presents a method for the reconstruction of a windshield surface using an image observed through it. This image is distorted because the light rays passing through the windshield undergo two refractions : one on each side of the glass. The distortion depends on the windshield shape and therefore this data is used to solve the problem. The first step is the construction of a vector field in the ambient space, from the deviations of the light rays passing through the windshield. This step relies on the Snell-Descartes refraction law and on simplifying assumptions regarding the curvature and thickness of a windshield. A vector at a point of this field corresponds to a prediction of the surface normal vector at this point, under the hypothesis that this point lies on the surface. The second step is to find a surface that is compatible with the obtained vector field. For this purpose, a minimisation problem is formulated for which the minimized variable is the difference between the surface normal vector and the one deduced from the system’s measurements. This leads to a nonlinear Euler- Lagrange equation for which the Dirichlet boundary conditions are imposed. The graph of the solution is the desired surface. The third step is a fixed-point method to solve the Euler- Lagrange equation. At the center of this method is a sequence of linear Poisson equations, each giving an approximating solution. It is shown that the limit of this sequence of solutions respects the original nonlinear equation. The Banach fixed-point theorem is used to get sufficient existence and uniqueness conditions, that are also sufficient conditions under which the proposed fixed-point method converges.
72

Online trajectory planning and observer based control

Anisi, David A. January 2006 (has links)
The main body of this thesis consists of four appended papers. The first two consider different aspects of the trajectory planning problem, while the last two deal with observer design for mobile robotic and Euler-Lagrange systems respectively. The first paper addresses the problem of designing a real time, high performance trajectory planner for aerial vehicles. The main contribution is two-fold. Firstly, by augmenting a novel safety maneuver at the end of the planned trajectory, this paper extends previous results by having provable safety properties in a 3D setting. Secondly, assuming initial feasibility, the planning method is shown to have finite time task completion. Moreover, in the second part of the paper, the problem of simultaneous arrival of multiple aerial vehicles is considered. By using a time-scale separation principle, one is able to adopt standard Laplacian control to this consensus problem, which is neither unconstrained, nor first order. Direct methods for trajectory optimization are traditionally based on a priori temporal discretization and collocation methods. In the second paper, the problem of adaptive node distribution is formulated as a constrained optimization problem, which is to be included in the underlying nonlinear mathematical programming problem. The benefits of utilizing the suggested method for online trajectory optimization are illustrated by a missile guidance example. In the third paper, the problem of active observer design for an important class of non-uniformly observable systems, namely mobile robotics systems, is considered. The set of feasible configurations and the set of output flow equivalent states are defined. It is shown that the inter-relation between these two sets may serve as the basis for design of active observers. The proposed observer design methodology is illustrated by considering a unicycle robot model, equipped with a set of range-measuring sensors. Finally, in the fourth paper, a geometrically intrinsic observer for Euler-Lagrange systems is defined and analyzed. This observer is a generalization of the observer recently proposed by Aghannan and Rouchon. Their contractivity result is reproduced and complemented by a proof that the region of contraction is infinitely thin. However, assuming a priori bounds on the velocities, convergence of the observer is shown by means of Lyapunov's direct method in the case of configuration manifolds with constant curvature. / QC 20101108
73

Contributions au calcul des variations et au principe du maximum de Pontryagin en calculs time scale et fractionnaire / Contributions to calculus of variations and to Pontryagin maximum principle in time scale calculus and fractional calculus

Bourdin, Loïc 18 June 2013 (has links)
Cette thèse est une contribution au calcul des variations et à la théorie du contrôle optimal dans les cadres discret, plus généralement time scale, et fractionnaire. Ces deux domaines ont récemment connu un développement considérable dû pour l’un à son application en informatique et pour l’autre à son essor dans des problèmes physiques de diffusion anormale. Que ce soit dans le cadre time scale ou dans le cadre fractionnaire, nos objectifs sont de : a) développer un calcul des variations et étendre quelques résultats classiques (voir plus bas); b) établir un principe du maximum de Pontryagin (PMP en abrégé) pour des problèmes de contrôle optimal. Dans ce but, nous généralisons plusieurs méthodes variationnelles usuelles, allant du simple calcul des variations au principe variationnel d’Ekeland (couplé avec la technique des variations-aiguilles), en passant par l’étude d’invariances variationnelles par des groupes de transformations. Les démonstrations des PMPs nous amènent également à employer des théorèmes de point fixe et à prendre en considération la technique des multiplicateurs de Lagrange ou encore une méthode basée sur un théorème d’inversion locale conique. Ce manuscrit est donc composé de deux parties : la Partie 1 traite de problèmes variationnels posés sur time scale et la Partie 2 est consacrée à leurs pendants fractionnaires. Dans chacune de ces deux parties, nous suivons l’organisation suivante : 1. détermination de l’équation d’Euler-Lagrange caractérisant les points critiques d’une fonctionnelle Lagrangienne ; 2. énoncé d’un théorème de type Noether assurant l’existence d’une constante de mouvement pour les équations d’Euler-Lagrange admettant une symétrie ; 3. énoncé d’un théorème de type Tonelli assurant l’existence d’un minimiseur pour une fonctionnelle Lagrangienne et donc, par la même occasion, d’une solution pour l’équation d’Euler-Lagrange associée (uniquement en Partie 2) ; 4. énoncé d’un PMP (version forte en Partie 1, version faible en Partie 2) donnant une condition nécessaire pour les trajectoires qui sont solutions de problèmes de contrôle optimal généraux non-linéaires ; 5. détermination d’une condition de type Helmholtz caractérisant les équations provenant d’un calcul des variations (uniquement en Partie 1 et uniquement dans les cas purement continu et purement discret). Des théorèmes de type Cauchy-Lipschitz nécessaires à l’étude de problèmes de contrôle optimal sont démontrés en Annexe. / This dissertation deals with the mathematical fields called calculus of variations and optimal control theory. More precisely, we develop some aspects of these two domains in discrete, more generally time scale, and fractional frameworks. Indeed, these two settings have recently experience a significant development due to its applications in computing for the first one and to its emergence in physical contexts of anomalous diffusion for the second one. In both frameworks, our goals are: a) to develop a calculus of variations and extend some classical results (see below); b) to state a Pontryagin maximum principle (denoted in short PMP) for optimal control problems. Towards these purposes, we generalize several classical variational methods, including the Ekeland’s variational principle (combined with needle-like variations) as well as variational invariances via the action of groups of transformations. Furthermore, the investigations for PMPs lead us to use fixed point theorems and to consider the Lagrange multiplier technique and a method based on a conic implicit function theorem. This manuscript is made up of two parts : Part A deals with variational problems on time scale and Part B is devoted to their fractional analogues. In each of these parts, we follow (with minor differences) the following organization: 1. obtaining of an Euler-Lagrange equation characterizing the critical points of a Lagrangian functional; 2. statement of a Noether-type theorem ensuring the existence of a constant of motion for Euler-Lagrange equations admitting a symmetry;3. statement of a Tonelli-type theorem ensuring the existence of a minimizer for a Lagrangian functional and, consequently, of a solution for the corresponding Euler-Lagrange equation (only in Part B); 4. statement of a PMP (strong version in Part A and weak version in Part B) giving a necessary condition for the solutions of general nonlinear optimal control problems; 5. obtaining of a Helmholtz condition characterizing the equations deriving from a calculus of variations (only in Part A and only in the purely continuous and purely discrete cases). Some Picard-Lindelöf type theorems necessary for the analysis of optimal control problems are obtained in Appendices.

Page generated in 0.0454 seconds