• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 312
  • 177
  • 55
  • 27
  • 23
  • 19
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 4
  • 3
  • 3
  • Tagged with
  • 737
  • 210
  • 131
  • 125
  • 114
  • 97
  • 90
  • 74
  • 71
  • 71
  • 68
  • 55
  • 55
  • 54
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Assessing the pollutant removal efficiency of a wetland as a polishing treatment for municipal wastewater

Mphuthi, Betty Refilwe 16 February 2021 (has links)
M. Tech. (Department of Biotechnology, Faculty of Applied and Computer Sciences) Vaal University of Technology. / Pollution of aquatic systems by wastewater containing pathogens, heavy metals and high concentrations of nutrients is of great concern due the ecological risks they impose. The toxic effects of metals may occur even at low concentrations because of potential bio magnification in the food chain. Excessive nutrients cause algal blooms which depletes oxygen and prevents sunlight from penetrating into the water, thereby killing fish and other aquatic organisms. This study investigated the pollutant removal efficiency of a riparian wetland located in Sebokeng, Emfuleni local municipality, South Africa. The study was carried out to assess the water quality of a wetland located downstream of the Sebokeng wastewater treatment plant by monitoring and analysing the physico-chemical parameters which included pH, temperature, electrical conductivity, nutrient levels (nitrates, phosphates, nitrites) and heavy metals. The water samples were collected from the effluent discharge of the treatment plant, upstream and downstream of the wetland. Plant uptake of heavy metals in a riparian wetland, nitrification as well as denitrification processes have been historically recorded as the main processes that contribute to the high removal of pollutants in a wetland. The contaminant concentrations of the influent and the effluent were used to estimate the wetland efficiency in improving the water quality that passes through it and its potential effects on improving the quality of irrigation waters. The heavy metals of interest included Al, Cd, Cr, Cu, Fe, Pb, Mn and Zn. Most heavy metals within the wetland occurred at low concentrations (lower than detectable limits and within the discharge limits for irrigation purposes). The results indicate that the average removal efficiencies for Electrical Conductivity (EC), Total coliforms (TC), E. coli, BOD5, COD, TSS, carbonate hardness, aluminium, iron, manganese, copper, nitrite, nitrate, sulfate and ortho-phosphate were 43 %, 51%, 85%, 60%, 61%, 61%, 21%, 67%, 52%, 51%, 83%, 56%, 89%, 49% and 54% respectively. The study showed that this wetland can provide up to 89% removal efficiency of pollutants. Of particular significance was the high pathogen and nutrient removal efficiency. A t-test was performed in order to determine the statistical significance of the wetland pollutant removal efficiencies. All p-values calculated were well below 0.05 and the removal efficiencies are therefore considered statistically significant. For this particular ecosystem the findings show that there is no great concern about metal pollution since most of the metals tested for were below the minimum limit for irrigation stipulated by the South African water regulation department (DWAF 1996a). Therefore, the wetland effluent water qualifies for both agriculture and landscape irrigation. Future considerations in choosing to use wetlands as a polishing facility for wastewater treatment systems are highlighted in the study.
252

Diatom analyses of sediment from Himmerfjärden estuary, southern archipelago of Stockholm : has the water discharge from a constructed sewage treatment plant led to eutrophication?

Elander, Lina January 2015 (has links)
A sediment core from Himmerfjärden estuary, south of Stockholm, was examined to detect records of eutrophication on the site since the opening of the sewage treatment plant Himmerfjärdsverket in 1974. The core was analysed with respect to the diatom record and lithology. Four macrofossil that were found in the sediment were dated using 14C-dating.    This study aims to detect changes in the environment of Himmerfjärden by using the diatom stratigraphy record. The results have been interpreted and discussed regarding natural environmental and climate change and/or anthropogenic impact, and detected changes will be associated with the history of the sampling site. The results show that the lowermost zone started to deposit around 1300-1490 cal yr BP and the homogeneous sediment indicates that the area was not suffering from hypoxia at that time. There is a successive transition towards more distinct lamination further up in the core which show that the environment in Himmerfjärden have changed and become hypoxic. This may have to do with factors such as the opening of heavily trafficked Södertälje Canal, and also the increased nutrient input from Himmerfjärdsverket.    This study could be a part of the process of working towards a “good environmental status” in the Baltic Sea. However, continued and improved work is needed for further and more accurate interpretations.
253

A diagenetic two-layer eutrophication model for Tolo Harbour, Hong Kong

Feleke, Arega Woldemariam. January 2000 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
254

Dynamisk massbalansmodellering av fosfor i Östersjön / Dynamic Mass-balance Modelling of Phosphorus in the Baltic Sea

Karlsson, Malin January 2007 (has links)
<p>During the past few years a vast amount of research has been done to increase the understanding of the complex ecosystem of the Baltic Sea. Modelling and simulations are important tools to increase knowledge of the system. A suitable model must be simple to use and the parameters and variables needed in the model must be easy to access.</p><p>In this paper a dynamical mass-balance model, CoastMab, which is validated for smaller coastal areas, has been used to predict concentrations and transports of phosphorus in three large coastal areas - the Gulf of Finland, the Gulf of Gdansk and the Gulf of Riga. CoastMab uses ordinary differential equations to regulate inflow, outflow and internal flows. To reflect seasonal variations in temperature and different types of flows the model has a temporal resolution of a month. The main purposes of this paper have been to evaluate CoastMab, predict the concentrations and the transports of phosphorus in each coastal area and to analyse how much and why the results differ from empirical data.</p><p>The performed simulations show the importance of a correct calculation of the wave base. This is due to its influence on the division between surface and deep water as well as the division of areas of accumulation and areas of erosion and transport. The retention times of surface and deep water calculated by the model also is of great importance because of their direct influence on the flow of water between the study area and the sea outside the area. This together with the concentration of phosphorus determines the flow of phosphorus in and out of the study area.</p><p>The dynamical mass-balance model is considered to work well in the three studied areas even though the areas are outside the model domain in several respects. Even if the predictions of the phosphorus concentration in the gulf of Riga was less accurate than in the other study areas, the prediction was inside the interval of standard deviation that has been calculated from empirical data. The major flow of phosphorus in the model was in the cross section between the Baltic proper and the modelled coastal area.</p><p>Since the model is easy to use and requires only a small number of obligatory input variables it would be appealing to continue development of the model to handle coastal areas of the same size and larger than the study areas in this paper.</p> / <p>Under senare år har mycket forskning utförts för att öka förståelsen av det komplexa ekosystem Östersjön utgör. Viktiga redskap för att öka förståelsen för systemet är modellering och simulering. För att en modell ska vara lämplig att använda är det viktigt att den inte är för komplicerad och att de parametrar och variabler som används i modellen är lättillgängliga.</p><p>I detta arbete har en dynamisk massbalansmodell, CoastMab, som är validerad för mindre kustområden använts för att modellera fosforkoncentrationer och fosforflöden i tre större kustområden - Finska viken, Gdanskbukten och Rigabukten. CoastMab reglerar genom ordinära differentialekvationer inflöden, utflöden och interna flöden. För att kunna hantera säsongsvariationer i temperatur och olika typer av flöden har modellen en temporär upplösning på en månad. Syftet med arbetet har främst varit att se hur väl CoastMab predikterar fosforkoncentrationen och fosforflöden inom respektive område, samt att analysera hur mycket och varför prediktionerna skiljer sig från empiriska data.</p><p>De simuleringar som utfördes visade att djupet på den teoretiska vågbasen, som modellen beräknar, är av stor betydelse eftersom den i sin tur bestämmer fördelningen yt- och djupvatten samt fördelningen av ackumulationsbottnar och erosions- och transportbottnar. De utbytestider för yt- och djupvatten som modellen beräknar är också av största vikt eftersom de har en direkt inverkan på vattenflödet mellan studerat område och havet utanför, vilket i sin tur tillsammans med fosforkoncentrationen bestämmer fosforflöden in och ut ur det studerade området.</p><p>Den dynamiska massbalansmodellen kan anses fungera väl för samtliga tre studerade områden, trots att de ligger utanför modellens domän i flera avseenden. Även om prediktionen av fosforkoncentrationen i Rigabukten blev sämre än för de två övriga områdena, låg prediktionen inom det intervall för standardavvikelsen som beräknats utifrån empiriska data. De största fosforflödena i modellen förekom för samtliga områden i gränssnittet mellan egentliga Östersjön och det modellerade kustområdet.</p><p>Enkelheten i att använda modellen och det låga antalet obligatoriska drivvariabler gör att den är väl värd att utveckla för att hantera områden av samma eller större storlek än de nu studerade områdena.</p>
255

Salt, water and nutrient fluxes to Himmerfjärden bay

Khalili, Maria January 2007 (has links)
<p>Naturvårdsverket rankar övergödningen som det allvarligaste hotet mot Östersjön. Strategin för att bekämpa övergödningen i Östersjön har varit att reducera antropogena utsläpp av fosfor och kväve från punktkällor och diffusa källor. Många forskare anser att primärproduktionen i egentliga Östersjön huvudsakligen är begränsad av kväve varför Sverige har infört ett ambitiöst och kostsamt program för avancerad kväverening på reningsverk. Andra experter hävdar istället att reducerade kväveutsläpp är meningslösa eller rent av skadliga.</p><p>I ljuset av dessa fundamentalt olika åsikter och de helt motsatta strategier de innebär syftar denna studie till att försöka klargöra vilka åtgärder som borde vidtas för att minska övergödningen genom att undersöka området Himmerfjärden som ofta används som ett exempel på lyckad kväverening. Området har också studerats intensivt sedan 1970-talet.</p><p>Detta arbete har använt en processbaserad dynamisk massbalansmodell för salt för att beräkna vattenutbytestider i Himmerfjärden. Flöden av vatten och näringsämnen till och från fjärden har beräknats och det har visats att bidraget av kväve och fosfor till Himmerfjärden från reningsverket är mycket marginellt jämfört med bidraget från Östersjön.</p><p>Denna studie har också genom att granska litteratur och mätdata från Himmerfjärden visat att det finns goda skäl att ifrågasätta hypotesen om att primärproduktionen i Himmerfjärden skulle vara långsiktigt begränsad av kväve. Resultaten av denna studie kommer att användas i framtida massbalansmodelleringar av fosfor, kväve och cyanobakterier i Himmerfjärden.</p> / <p>The Swedish Environmental Protection Agency has ranked eutrophication as the most severe threat to the Baltic Sea. The strategy to combat the eutrophication in the Baltic has been to reduce antrophogenous emissions of phosphorus and nitrogen from point and diffuse sources. Many scientists argue that the primary production in the Baltic proper is primarily limited by nitrogen which is why Sweden and other countries have implemented an ambitious and expensive program of advanced nitrogen removal in sewage treatment plants. Other experts argue that reduced nitrogen load to the Baltic Sea is either pointless or even harmful.</p><p>In the light of these fundamentally different views and the very opposite management strategies they imply, this study aims to more bring clarity to which measures should be taken to reduce eutrophiction by investigating the area of Himmerfjärden. Himmerfjärden is often used as an example of successful removal of nitrogen and the area has been intensively monitored since the 1970’s.</p><p>This work used a process-based dynamic mass balance model for salt to calculate water retention times in Himmerfjärden. Water and nutrient flows to and from the bay have been calculated. It was shown that the contribution of nutrients to Himmerfjärden from the treatment plant is small compared to the contribution from the Baltic Sea.</p><p>This study showed by reviewing literature on Himmerfjärden that there are good reasons to question the hypothesis of Himmerfjärden being nitrogen limited in the long-run. The findings of this study will be used in future mass balance modelling of phosphorus, nitrogen and cyanobacteria in Himmerfjärden.</p>
256

Development of chironomid-based transfer functions for surface water quality parameters and temperature, and their application to Quaternary sediment records from the South Island, New Zealand

Woodward, Craig Allan January 2006 (has links)
This thesis resulted in the development of robust chironomid-based transfer-functions for February mean air temperature and the concentration of total nitrogen (TN) in lake-water. The New Zealand transfer-functions for both variables compare favourably with chironomid-based transfer-functions for equivalent variables from elsewhere in the world, and diatom-based transfer-functions for nutrients and lake production from New Zealand. The application of the temperature and TN transfer-functions provided insight into New Zealand climate conditions during the last glacial and served as validation for the reconstructions. Chironomid-based Temperature reconstructions from lake silts preserved in the banks of Lyndon Stream indicate a maximum cooling of ca 4 ℃ between 26.6 and 24.5 ka BP, which is consistent with estimates based on beetles and plant macrofossils. A cooling of 4 ℃ is insufficient to explain the lack of canopy tree pollen in many New Zealand pollen records at this time. Other environmental parameters additional to temperature may have limited the expansion forest cover. The chironomid-based TN reconstructions infer a trend of rapidly deteriorating water-quality in a small doline in north-west Nelson, in the South Island of New Zealand following deforestation immediately surrounding the lake ca. 1970 AD. The overall trend and timing of eutrophication inferred from the chironomids was consistent with other biological proxies and actual observations of changes in lake water quality. The chironomid-based transfer-functions provide a valuable new tool for the study of longterm climate variability and improving our understanding of the response of aquatic ecosystems to long-term natural and human induced environmental change in New Zealand lakes. I have identified some possibilities for future research which should improve the performance of these transfer-functions. The improvement of the chironomid taxonomy and the expansion of the training set should be the highest priorities.
257

Modeling the growth dynamics of <em>Cladophora</em> in eastern Lake Erie

Higgins, Scott January 2005 (has links)
<em>Cladophora glomerata</em> is a filamentous green alga that currently forms extensive blooms in nearshore areas of Lake Ontario, eastern Lake Erie, Lake Michigan, and isolated locations in Lake Huron. The biomass, areal coverage, algal bed characteristics, and tissue phosphorus concentrations of <em>Cladophora glomerata</em> were measured at 24 nearshore rocky sites along the northern shoreline of Lake Erie?s eastern basin between 1995-2002. Midsummer areal coverage at shallow depths (&le;5m) ranged from 4-100 %, with a median value of 96%. Peak seasonal biomass ranged from <1 to 940 g m<sup>-2</sup> dry mass (DM), with a median value of 171 g m<sup>-2</sup> DM. Tissue phosphorus varied seasonally, with initial high values in early May (0. 15 to 0. 27 % DM; median 0. 23 % DM) to midsummer seasonal low values during peak biomass (0. 03 to 0. 23 % DM; median 0. 06 % DM). A numerical <em>Cladophora</em> growth model (CGM) was revised and field-tested at 5 sites in eastern Lake Erie during 2002. The CGM is useful for: 1) Predicting <em>Cladophora</em> growth, biomass, and tissue phosphorus concentrations under non-point source P loading with no depth restrictions; 2) providing estimates of the timing and magnitude of the midsummer sloughing phenomenon; 3) determining the contribution of <em>Dreissena</em> invasion to the resurgence of <em>Cladophora</em> in eastern Lake Erie; and 4) developing management strategies for <em>Cladophora</em> abatement. The CGM was applied to investigate how the spatial and temporal patterns of <em>Cladophora</em> growth were influenced by the natural variability in environmental parameters in eastern Lake Erie. Seasonal patterns in <em>Cladophora</em> growth were strongly influenced by temperature, and peak depth-integrated biomass was strongly influenced by both available light and phosphorus. The photosynthetic capacity of field collected <em>Cladophora</em> was a poor predictor of the mid-summer sloughing phenomenon. The CGM, however, predicted that self-shading within the dense <em>Cladophora</em> mats would have caused negative growth rates at the base of the dense mats for 14 days prior to the sloughing event. The metabolic imbalances at the base of the <em>Cladophora</em> mats were driven primarily by the availability of light and were exacerbated by intermediate water temperatures (~23??C). The excellent agreement between model simulations and field data illustrates the ability of the CGM to predict tissue P and growth over a range of sites and depths in eastern Lake Erie and suggests potential for the model to be successfully applied in other systems.
258

Algal bioreactors for nutrient removal and biomass production during the tertiary treatment of domestic sewage

Kendrick, Martin January 2011 (has links)
This thesis covers work carried out on algae bioreactors as a tertiary treatment process for wastewater treatment. The process was primarily assessed by the removal of Phosphorus and Nitrogen as an alternative to chemical and bacterial removal. Algal bioreactors would have the added advantage of carbon sequestration and a by-product in the energy rich algal biomass that should be exploited in the existing AD capacity. Laboratory scale bioreactors were run (4.5-30L) using the secondary treated final effluent from the local Loughborough sewage works. In a preliminary series of experiments several different bioreactor designs were tested. These included both batch feed and continuous flow feed configurations. The bioreactors were all agitated to keep the algal cells in suspension. The results demonstrated that the most effective and easy to operate was the batch feed process with the algal biomass by-product harvested by simple gravitational settling. Experiments also compared an artificial light source with natural light in outdoor experiments. Outdoor summer light produced greater growth rates but growth could not be sustained in natural UK winter light. Light intensity is proportional to productivity and algae require a minimum of around 97W/m2 to grow, an overcast winter day (the worst case scenario) was typically around 78W/m2, however this was only available for a few hours per day during Nov-Jan. The process would be better suited to areas of the world that receive year round sunlight. It was shown that phosphorus could be totally removed from wastewater by the algae in less than 24 hours depending on other operating variables. With optimisation and addition of more carbon, a HRT of 10-12 hours was predicted to achieve the EU WFD / UWWTD standard. It was further predicted that the process could be economically and sustainably more attractive than the alternatives for small to medium sized works. Biomass 3 concentrations of between 1-2g/L were found to best achieve these removals and produce the fastest average growth rates of between 125-150mg/L/d. The uptake rates of phosphorus and nitrogen were shown to be dependent on the type of algae present in the bioreactor. Nitrogen removal was shown to be less effective when using filamentous bluegreen algae whilst phosphorus removal was almost completely stopped compared to unicellular green algae that achieved a nitrogen uptake of 5.3mg/L/d and phosphorus uptake of 8mg/L/d. Soluble concentrations of Fe, Ni and Zn were also reduced by 60% in the standard 10 hours HRT. The predominant algae were shown to depend largely on these concentrations of phosphorus and nitrogen, and the strain most suited to that specific nutrient or temperature environment dominated. Nutrient uptake rates were linked to algal growth rates which correlated with the availability of Carbon as CO2. CO2 was shown to be the limiting factor for growth; becoming exhausted within 10 hours and causing the pH to rise to above 10.5. The literature showed this was a common result and the use of CO2 sparging would more than double performance making this process a good candidate for waste CO2 sequestration. Heat generated from combustion or generators with exhaust CO2 would also be ideal to maintain a year round constant temperature of between 20-25°C within the bioreactors. A number of possible uses for the algal biomass generated were examined but currently the most feasible option is wet anaerobic co-digestion. Further economic analysis was recommended on the balance between land area and complementary biomass generation for AD. It was also suggested given the interest as algae as a future fuel source, the process could also be adapted for large scale treatment and algal biomass production in areas of the world where land was available.
259

Greppa lantbrukarna : En kvalitativ intervjustudie om lantbrukares val att inte ansluta sig till Greppa Näringen

Frode, Anna, Berglund, Jens January 2016 (has links)
För att kunna sträva efter en hållbar utveckling och lämna över en god miljö till nästa generation krävs ett samordnat arbete kring de källor som utgör påverkan på naturen och miljön. Jordbruket är en sektor som påverkar naturen och miljön genom dess näringsläckage till mark och vatten.  För att minska näringsläckaget krävs styrmedel som har till syfte att effektivisera för ett mer hållbart jordbruk. Greppa Näringen är ett tyrmedel i Sverige som startades som ett projekt för att stoppa framförallt utlakning av kväve från svenska åkermarker. En bättre förståelse av vad som ligger bakom lantbrukares val att inte ansluta sig till Greppa Näringen är avgörande för att kunna designa ett optimalt program anpassat för lantbrukarna. Denna studie har genomförts utifrån kvalitativa intervjuer för att identifiera faktorer och bakomliggande aspekter som ligger till grund för att lantbrukare inte väljer att ansluta sig till Greppa Näringen. Fem lantbrukare har intervjuats och de faktorer som har identifierats är kunskap, engagemang, tid, förtroende, påverkan utifrån och ekonomi. De mest betydande aspekterna som lantbrukarna nämnde var att verksamheten inte är relevant för Greppa Näringen (kunskap), att lantbrukarna har prioriterat annat inom verksamheten (engagemang och tid) samt att lantbrukarna inte tar till sig den informationen som Greppa Näringen ger ut (engagemang). Faktorerna ekonomi och påverkan utifrån har endast nämnts av en lantbrukare. / n order to strive for a sustainable development and hand over a good environment to the next generation, a coordinated work requires on the point- sources that has great impact on nature and the environment. The agriculture is a sector which has great impact on nature and the environment through its leaching of nutrients to soil and water. To reduce the leakage of nutrients, a set of instruments is required. Instruments, which aim to improve the efficiency of a more sustainable agriculture. Greppa Näringen is an instrument in Sweden that started as a project to mainly stop the leaching of nitrogen from Swedish arable land. A better understanding of what is behind farmers' decision not to participate in Greppa Näringen is crucial to be able to design the most ideal program adapted for the farmers. This study has been conducted from qualitative interviews to identify the factors and underlying aspects that explain why farmers choose not to participate in Greppa Näringen. Five farmers were interviewed and the factors that have been identified are, knowledge, commitment, time, trust, influence from the society and economy. The most commonly mentioned aspects were; that the farm is not of relevance for Greppa Näringen (knowledge), that farmers have prioritized other things within the farm (commitment and time) and also that farmers do not adopt information from Greppa Näringen, even though it is presented to them (commitment). The factors economy and influence from the society has only been mentioned by one of the farmers.
260

Eutrophic Levels of Different Areas of a Reservoir: A Comparative Study

Hendricks, Albert C. 08 1900 (has links)
It was the purpose of this investigation to attempt to demonstrate if differences in eutrophic levels existed among selected areas of Garza-Little Elm, and to demonstrate the role that sediments play in affecting eutrophication.

Page generated in 0.1302 seconds