Spelling suggestions: "subject:"evolutionary computational"" "subject:"mvolutionary computational""
201 |
Algoritmo evolutivo com representação inteira para seleção de características / Evolutionary algorithm using integer representation for feature selectionSousa, Rhelcris Salvino de 20 April 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-05-31T17:56:45Z
No. of bitstreams: 2
Dissertação - Rhelcris Salvino de Sousa -2017.pdf: 12280322 bytes, checksum: 2985f69ec9d4b79ed4266baba761bd15 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-06-01T11:00:44Z (GMT) No. of bitstreams: 2
Dissertação - Rhelcris Salvino de Sousa -2017.pdf: 12280322 bytes, checksum: 2985f69ec9d4b79ed4266baba761bd15 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-06-01T11:00:44Z (GMT). No. of bitstreams: 2
Dissertação - Rhelcris Salvino de Sousa -2017.pdf: 12280322 bytes, checksum: 2985f69ec9d4b79ed4266baba761bd15 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-04-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Machine learning problems usually involve a large number of features or variables. In
this context, feature selection algorithms have the challenge of determining a reduced
subset from the original set. The main difficulty in this task is the high number of solutions
available in the search space. In this context, genetic algorithm is one of the
most used techniques in this type of problem due to its implicit parallelism in the exploration
of the search space of the problem considered. However, a binary type representation
is usually used to encode the solutions. This work proposes an implementation
solution that makes use of integer representation called intEA-MLR instead of binary.
The integer representation optimizes the understanding of the data, as the features
to be selected are represented by integer values, reducing the size of the chromosome
used in the search process. The intEA-MLR in this context is presented as an alternative
way of solving high dimensional problems in regression problems. As a case study,
three different sets of data are used concerning problems involving determination of properties
of interest in samples of 1) Grain Wheat, 2) Medicine tablets and 3) petroleum.
Such sets were used in competitions held at the International Diffuse Reflectance Conference
(IDRC) (http://cnirs.clubexpress.com/content.aspx?page_id=22&club_
id=409746&module_id=190211), in the years 2008, 2012 and 2014, respectively. The results
showed that the proposed solution was able to improve the obtained solutions when
compared to the classical implementation that makes use of binary coding, with both more
accurate prediction models and with reduced number of features. IntEA-MLR also outperformed
the competition winners, reaching 91.17% better than the competition winner
for the petroleum data set. In addition, the results also indicated that the computation time
required by the intEA-MLR is relatively smaller as more features are available. / Problemas de aprendizado de máquina geralmente envolvem um grande número de características
ou variáveis. Nesse contexto, algoritmos de seleção de características tem
como desafio determinar um subconjunto reduzido a partir do conjunto original. A principal
dificuldade nesta tarefa é o elevado número de soluções disponíveis no espaço de
busca. Nesse contexto, algoritmo genético é uma das técnicas mais utilizadas nesse tipo
de problema em razão de seu paralelismo implícito na exploração do espaço de busca do
problema considerado. Entretanto, geralmente utiliza-se uma representação do tipo biná-
ria para codificar as soluções. Neste trabalho é proposto uma solução de implementação
que faz uso de representação inteira denominada intEA-MLR em detrimento da binária.
A representação inteira otimiza o entendimento dos dados, na medida em que as características
a serem selecionadas são determinadas por valores inteiros reduzindo o tamanho
do cromossomo utilizado no processo de busca. O intEA-MLR nesse contexto, se apresenta
como uma forma alternativa de resolução de problemas de alta dimensionalidade
em problemas de regressão. Como estudo de caso, utiliza-se três diferentes conjuntos de
dados referente a problemas envolvendo determinação de propriedades de interesse em
amostra de 1) Grãos de Trigo, 2) Comprimidos de remédio e 3) Petróleo. Tais conjuntos
foram utilizados nas competições realizadas no International Diffuse Reflectance Conference
(IDRC) (http://cnirs.clubexpress.com/content.aspx?page_id=22&club_
id=409746&module_id=190211), nos anos de 2008, 2012 e 2014, respectivamente. Os
resultados mostraram que a solução proposta foi capaz de aprimorar as soluções obtidas
quando comparadas com a implementação clássica que faz uso da codificação binária,
tanto com modelos de predição mais acurados quanto com número reduzido de características.
intEA-MLR também obteve resultados superiores aos dos vencedores das competições,
chegando a obter soluções 91,17% melhores do que o vencedor da competição
para o conjunto de dados de petróleo. Adicionalmente, os resultados também indicaram
que o tempo de computação requerido pelo intEA-MLR é relativamente menor a medida
em que um número maior de características estão disponíveis.
|
202 |
Uma proposta de relé digital de freqüência baseado em algoritmos genéticos / A proposal of a digital frequency relay based on genetic algorithmsElis Tápia Vargas 10 October 2005 (has links)
Este trabalho apresenta um método baseado em algoritmos genéticos AGs, o qual consiste na estimação dos parâmetros associados as formas de ondas, tais como amplitude, freqüência e ângulo de fase das mesmas, referentes a uma proposição de relé de freqüência. O método proposto é baseado em algoritmos genéticos com representação real, tendo em vista a não necessidade de codificação dos valores logo na entrada do processo. O objetivo do trabalho é apresentar um estudo de uma das várias técnicas da computação evolutiva, conhecida como AG, cuja aplicação é inspirada nos mecanismos da evolução natural das espécies identificado pelo naturalista inglês Charles Darwin. A idéia principal do método é fazer com que os indivíduos da população evoluam ao longo das iterações, chamadas gerações, produzindo soluções cada vez melhores até convergir a uma solução ótima ou aproximadamente ótima. O algoritmo proposto foi testado com dados simulados no software Matlab. Pelos resultados observados têm-se caracterizado a potencialidade desta ferramenta computacional na estimação dos parâmetros desejados. / This work presents a method based on genetic algorithm GAs, which consists on estimation of parameters in waveforms, such as their amplitude, frequency and phase angles, related to the application of a frequency relay. The proposed study is based on the genetic algorithms with real representation, once there is no need to codify the values on the input of the process. The objective of this work is to present one of the several techniques of artificial intelligence, known as genetic algorithm, in which the main application is inspired in mechanisms of natural evolution of the species identified by Charles Darwin. The main idea of this method is to make the individuals from one population, called generation, to evolute, producing better solutions until they converge to an optimal or approximately optimal solution. The proposed algorithm was tested with simulated data from Matlab software. The results observed have characterized the efficiency of this computational tool for the estimation of the desired parameters.
|
203 |
Estratégias de busca no projeto evolucionista de circuitos combinacionaisManfrini, Francisco Augusto Lima 23 February 2017 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-01T15:26:09Z
No. of bitstreams: 1
franciscoaugustolimamanfrini.pdf: 2355106 bytes, checksum: 0c2126ac87b502d91fbb53cda2fa0b2a (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-02T15:56:42Z (GMT) No. of bitstreams: 1
franciscoaugustolimamanfrini.pdf: 2355106 bytes, checksum: 0c2126ac87b502d91fbb53cda2fa0b2a (MD5) / Made available in DSpace on 2017-06-02T15:56:42Z (GMT). No. of bitstreams: 1
franciscoaugustolimamanfrini.pdf: 2355106 bytes, checksum: 0c2126ac87b502d91fbb53cda2fa0b2a (MD5)
Previous issue date: 2017-02-23 / A computação evolucionista tem sido aplicada em diversas áreas do conhecimento para a descoberta de projetos inovadores. Quando aplicada na concepção de circuitos digitais o problema da escalabilidade tem limitado a obtenção de circuitos complexos, sendo apontado como o maior problema em hardware evolutivo. O aumento do poder dos métodos evolutivos e da eficiência da busca constitui um importante passo para melhorar as ferramentas de projeto. Este trabalho aborda a computação evolutiva aplicada ao projeto de circuito lógicos combinacionais e cria estratégias para melhorar o desempenho dos algoritmos evolutivos. As três principais contribuições resultam dessa tese são: (i) o desenvolvimento de uma nova metodologia que ajuda a compreensão das causas fundamentais do sucesso/fracasso evolutivo;(ii)a proposta de uma heurística para a semeadura da população inicial; os resultados mostram que existe uma correlação entre a topologia da população inicial e a região do espaço de busca explorada; e (iii) a proposta de um novo operador de mutação denominado Biased SAM; verificou-se que esta mutação pode guiar de maneira efetiva a busca. Nos experimentos realizados o operador proposto é melhor ou equivalente ao operador de mutação tradicional. Os experimentos computacionais que validaram as respectivas contribuições foram feitos utilizando circuitos benchmark da literatura. / Evolutionary computation has been applied in several areas of knowledge for discovering Innovative designs. When applied to a digital circuit design the scalability problem has limited the obtaining of complex circuits, being pointed as the main problem in the evolvable hardware field. Increased power of evolutionary methods and efficiency of the search constitute an important step towards improving the design tool. This work approaches the evolutionary computation applied to the design of combinational logic circuits and createsstrategiestoimprovetheperformanceofevolutionaryalgorithms. The three main contributions result from this thesis are: (i) the developement of a methodology that helps to understand the success/failure of the genetic modifications that occur along the evolution; (ii) a heuristic proposed for seeding the initial population; the results showed there is a correlation between the topology of the initial population and the region of the search space which is explored. (iii) a proposal of a new mutation operator referred to as Biased SAM; it is verified that this operator can guide the search. In the experiments performed the mutation proposed is better than or equivalent to the traditional mutation. The computational experiments that prove the efficiency of the respective contributions were made using benchmark circuits of the literature.
|
204 |
Síntese automática de redes neurais artificiais com conexões à frente arbitrárias / Automatic synthesis of artificial neural networks with arbitrary feedforward connectionsPuma Villanueva, Wilfredo Jaime 12 July 2011 (has links)
Orientador: Fernando José Von Zuben / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-19T17:59:57Z (GMT). No. of bitstreams: 1
PumaVillanueva_WilfredoJaime_D.pdf: 4821342 bytes, checksum: 521a056fca2c42985a2fad34069b7255 (MD5)
Previous issue date: 2011 / Resumo: Esta tese apresenta duas metodologias de síntese automática de redes neurais artificiais com conexões à frente arbitrárias, com a proposição da arquitetura via computação evolutiva ou via um método construtivo, enquanto que os pesos sinápticos são definidos por técnicas de otimização não-linear. O processo de treinamento supervisionado visa parcimônia do modelo e máxima capacidade de generalização. Quando comparada a iniciativas similares encontradas na literatura, a versão construtiva da metodologia, denominada CoACFNNA, inova também ao permitir a síntese de arquiteturas mais flexíveis, com capacidade de mapeamento linear e não-linear, e ao promover baixo custo computacional. Este algoritmo construtivo parte de uma rede neural mínima, toma decisões de inserção/poda baseadas em análise de sensibilidade e em índices de informação mútua, relaxa o erro de treinamento para evitar convergência prematura e ajusta os pesos sinápticos via um método quasi- Newton com escalonamento automático. Estudos comparativos envolvendo abordagens alternativas baseadas em redes neurais, tais como MLPs, mistura heterogênea de especialistas, Cascade Correlation e a EPNet, baseada em programação evolutiva, indicam que a metodologia é promissora, tendo sido aplicada junto a problemas artificiais e reais, de classificação e de regressão / Abstract: This thesis presents two methodologies for the automatic synthesis of artificial neural networks with arbitrary feed-forward connections, with the proposition of the architecture based on evolutionary computation and on a constructive method, whereas the synaptic weights are defined by nonlinear optimization techniques. The supervised learning process aims at parsimony of the model and maximum generalization capability. When compared to similar approaches in the literature, the constructive version of the methodology, denoted CoACFNNA, innovates also by allowing the synthesis of more flexible architectures, with linear and nonlinear mapping capability, and by promoting low computational cost. This constructive algorithm starts with a minimum neural network, takes decisions of insertion/pruning based on sensitivity analysis and also mutual information indices, relaxes the training error to avoid premature convergence, and adjusts the synaptic weights by means of a quasi-Newton method with automatic scaling. Comparative studies involving alternative approaches based on neural networks, such as MLPs, mixture of heterogeneous experts, cascade correlation and the EPNet, based on evolutionary programming, indicate that the proposal is promising, being applied to artificial and real problems, for classification and regression / Doutorado / Engenharia de Computação / Doutor em Engenharia Elétrica
|
205 |
Estimação e previsão da estrutura a termo das taxas de juros usando técnicas de inteligência computacional / Term structure of interest rate modeling and forecasting using computational intelligence techniquesMaciel, Leandro dos Santos, 1986- 20 August 2018 (has links)
Orientadores: Fernando Antonio Campos Gomide, Rosangela Ballini / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-20T17:20:07Z (GMT). No. of bitstreams: 1
Maciel_LeandrodosSantos_M.pdf: 2052895 bytes, checksum: a88ae55ebe5e6a0ea1053d3c5aef5f66 (MD5)
Previous issue date: 2012 / Resumo: Este trabalho propõe a utilização de técnicas de inteligência computacional para a estimação e previsão da estrutura a termo das taxas de juros, com base em dados dos mercados de renda fixa dos Estados Unidos e Brasil. Para o problema de estimação da curva de juros, as técnicas de computação evolucionária, Algoritmos Genéticos, Evolução Diferencial e Estratégias Evolutivas, foram comparadas com abordagens tradicionais da literatura, como mínimos quadrados não-lineares e programação quadrática sequencial. A motivação da aplicação de técnicas de computação evolucionária no problema de estimação da estrutura a termo busca superar limitações como não-convergência e elevada instabilidade dos parâmetros à inicialização. Além disso, recentemente, a literatura tem apontado o elevado desempenho dos algoritmos genéticos em problemas de modelagem da curva de rendimentos. Outra contribuição deste trabalho consiste no desenvolvimento de um modelo nebuloso evolutivo de aprendizado participativo estendido, denominado ePL+, que inclui em sua versão original, ePL, mecanismos para aumentar sua autonomia e adaptabilidade na modelagem de sistemas complexos. Dessa forma, o modelo ePL+ e outros modelos nebulosos funcionais evolutivos foram avaliados na questão da previsão das taxas futuras de juros, em contraposição com modelos econométricos baseados em processos autoregressivos e modelos de redes neurais artificiais multi-camadas, uma vez que a evolução das taxas de juros apresenta uma dinâmica altamente não-linear e variante no tempo, justificando a ideia de modelagem adaptativa. O desempenho dos métodos considerados foi avaliado em termos de métricas de erro, complexidade computacional e por meio de testes estatísticos paramétricos e não-paramétricos, MGN e SIGN, respectivamente. Os resultados evidenciaram o elevado potencial dos modelos de inteligência computacional na estimação e previsão da estrutura a termo em ambas economias consideradas, constatado pelo melhor desempenho, em termos de ajuste e significância estatística, em relação às técnicas de otimização de parâmetros e econométricas mais utilizadas na literatura / Abstract: This work proposes the term structure of interest rates modeling and forecasting using computational intelligence techniques, based on data from the US and Brazilian fixed income markets. The yield curve modeling includes the use of some evolutionary computation methods like Genetic Algorithms, Differential Evolution and Evolution Strategies in comparison with traditional optimization techniques such as nonlinear least squares and sequential quadratic programming. The motivation behind the use of evolutionary computation to yield curve estimation aims to overcome limitations like non-convergence and high parameters instability to initialization. Moreover, recently, the literature has been shown the higher performance of genetic algorithms in yield curve modeling problems. This work also contributes by developing an extended participatory learning fuzzy model, called ePL+, which includes on its original version, ePL, mechanisms to improve its autonomy and adaptability in complex systems modeling. Therefore, the ePL+ model and some evolving functional fuzzy approaches were evaluated in the future interest rates forecasting, as opposed to econometric models based on autoregressive processes and multilayer artificial neural networks methodologies, since interest rates evolution shows a high non-linear dynamics and also time-varying, justifying the idea of adaptive modeling. Models' performance were compared in terms of error measures, computational complexity and by parametric and non-parametric statistical tests, MGN and SIGN, respectively. The results reveal the high potential of computational intelligence methods to deal with the term structure modeling and forecasting for both economies considered, as pointed out by their adjustment and statistical superior performance then traditional optimization and econometrics techniques reported in the literature / Mestrado / Automação / Mestre em Engenharia Elétrica
|
206 |
[en] SOLUTION OF ORDINARY, PARTIAL AND STOCHASTIC DIFFERENTIAL EQUATIONS BY GENETIC PROGRAMMING AND AUTOMATIC DIFFERENTIATION / [pt] SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, PARCIAIS E ESTOCÁSTICAS POR PROGRAMAÇÃO GENÉTICA E DIFERENCIAÇÃO AUTOMÁTICAWALDIR JESUS DE ARAUJO LOBAO 03 May 2017 (has links)
[pt] O presente trabalho teve como objetivo principal investigar o potencial de algoritmos computacionais evolutivos, construídos a partir das técnicas de programação genética, combinados com diferenciação automática, na obtenção de soluções analíticas, exatas ou aproximadas, para problemas de equações diferenciais ordinárias (EDO), parciais (EDP) e estocásticas. Com esse intuito, e utilizando-se o ambiente de programação Matlab, diversos algoritmos foram elaborados e soluções analíticas de diferentes tipos de equações diferenciais foram determinadas. No caso das equações determinísticas, EDOs e EDPs, foram abordados problemas de diferentes graus de dificuldade, do básico até problemas complexos como o da equação do calor e a equação de Schrödinger para o átomo de hélio. Os resultados obtidos são promissores, com soluções exatas para a grande maioria dos problemas tratados e que atestam, empiricamente, a consistência e robustez da metodologia proposta. Com relação às equações estocásticas, o trabalho apresenta uma nova proposta de solução e metodologia alternativa para a precificação de opções europeias, de compra e de venda, e realiza algumas aplicações para o mercado brasileiro, com ações da Petrobras e da Vale. Além destas aplicações, são apresentadas as soluções de alguns modelos clássicos, usualmente utilizados na modelagem de preços e retornos de ativos financeiros, como, por exemplo, o movimento Browniano geométrico. De uma forma geral, os resultados obtidos nas aplicações indicam que a metodologia proposta nesta tese pode ser uma alternativa eficiente na modelagem de problemas científicos complexos. / [en] The main objective of this work was to investigate the potential of evolutionary algorithms, built from genetic programming techniques and combined with automatic differentiation, in obtaining exact or approximate analytical solutions for problems of ordinary (ODE), partial (PDE), and stochastic differential equations. To this end, and using the Matlab programming environment, several algorithms were developed and analytical solutions of different types of differential equations were determined. In the case of deterministic equations, ODE and PDE problems of varying degrees of difficulty were discussed, from basic to complex problems such as the heat equation and the Schrödinger equation for the helium atom. The results are promising, including exact solutions for the vast majority of the problems treated, which attest empirically the consistency and robustness of the proposed methodology. Regarding the stochastic equations, the work presents a new proposal for a solution and alternative methodology for European options pricing, buying and selling, and performs some applications for the Brazilian market, with stock prices of Petrobras and Vale. In addition to these applications, there are presented solutions of some classical models, usually used in the modeling of prices and returns of financial assets, such as the geometric Brownian motion. In a general way, the results obtained in applications indicate that the methodology proposed in this dissertation can be an efficient alternative in modeling complex scientific problems.
|
207 |
Planejamento de rota para VANTs em caso de situação crítica: Uma abordagem baseada em segurança / Route planning for UAVs with risk of critical failure: a security-based approachJesimar da Silva Arantes 18 March 2016 (has links)
A segurança nos voos de Veículos Aéreos Não Tripulados (VANTs) é uma importante questão e vem ganhando destaque devido a uma série de acidentes com tais aeronaves. O aumento do número de aeronaves no espaço aéreo e a autonomia cada vez maior para realizar missões estão entre outros elementos que merecem destaques. No entanto, pouca atenção tem sido dada a autonomia da aeronave em casos emergenciais [Contexto]. Nesse contexto, o desenvolvimento de algoritmos que efetuem o planejamento de rotas na ocorrência de situações críticas é fundamental para obter maior segurança aérea. Eventuais situações de insegurança podem estar relacionadas a uma falha nos equipamentos do veículo aéreo que impede a continuação da missão em curso pela aeronave [Lacuna]. A presente pesquisa avança o estado da arte considerando um conceito chamado In-Flight Awareness (IFA), que estabelece consciência situacional em VANTs, visando maior segurança de voo. Os estudos também avançam na proposição de modelos matemáticos que representem o estado da aeronave avariada, viabilizando o pouso emergencial e minimizando possíveis danos [Propósito]. Este trabalho utiliza técnicas de computação evolutiva como Algoritmos Genéticos (AG) e Algoritmos Genéticos Multi-Populacional (AGMP), além de uma Heurística Gulosa (HG) e um modelo de Programação Linear Inteira Mista (PLIM) no tratamento de falhas críticas juntamente com o conceito de IFA [Metodologia]. As soluções obtidas foram avaliadas através de experimentos offline usando os modelos matemáticos desenvolvidos, além de validadas em um simulador de voo e em um voo real. De forma geral, o AG e AGMP obtiveram resultados equivalentes, salvando o VANT em aproximadamente 89% dos mapas. A HG conseguiu trazer a aeronave até uma região bonificadora em 77% dos mapas dentro de um tempo computacional abaixo de 1 segundo. No modelo PLIM, o tempo gasto foi de cerca de quatro minutos já que garantia a otimalidade da solução encontrada. Devido ao seu elevado tempo computacional, uma estratégia evolvendo rotas pré-calculadas foi definida a partir do PLIM, mostrando-se bastante promissora. Nos experimentos envolvendo simulador de voo foram testadas diferentes condições de vento e se verificou que mesmo sobre tais condições os métodos desenvolvidos conseguiram efetuar o pouso com segurança [Resultado]. O trabalho apresentado colabora com a segurança de Veículos Aéreos Não Tripulados e com a proposta de modelos matemáticos que representem a aeronave em caso de situações críticas. Os métodos, de forma geral, mostraram-se promissores na resolução do problema de pouso emergencial já que trouxeram a aeronave com segurança até regiões interessantes ao pouso em um baixo tempo computacional. Isso foi atestado pelos resultados obtidos a partir das simulações offline, em simulador de voo e em voo real [Conclusão]. As principais contribuições do trabalho são: modelagem de regiões adequadas ao pouso, modelagem de falhas, arquitetura do sistema planejador de rotas e modelo linear para para pouso emergencial [Contribuição]. / The security involved in flights of Unmanned Aerial Vehicles (UAVs) is an important issue and is achieving prominence due to a number of accidents involving such aircraft. Other elements that deserve highlights are the increase in the number of aircraft in the airspace and autonomy to perform missions, however, little attention has been given to the autonomy of the aircraft in emergency cases [Context]. In this context, the development of algorithms that contribute significantly to the path planning in the event of critical situations is essential for more air traffic. Possible situations of insecurity may be related to a failure in the equipment of vehicle that prevents the continuation of the current mission by aircraft [Gap]. The research advances the state of the art considering a concept called In-Flight Awareness (IFA), which provides situational awareness in UAVs aiming at greater flight safety. Advances also in the developing of mathematical models that represent the state of the damaged aircraft, with the purpose to execute the emergency landing by minimizing damages [Purpose]. Thus, this work applies evolutionary computation techniques such as Genetic Algorithms (GA) and Multi-Population Genetic Algorithms (MPGA), as well as a Greedy Heuristic (GH) and a Mixed Integer Linear Programming (MILP) model to deal with critical situations along with the concept of IFA [Methodology]. The solutions obtained were evaluated through offline experiments using the developed mathematical models, which were validated in a flight simulator and a real-world flight. In General, the GA and MPGA reached similar results by saving the UAV in approximately 89% of the maps, while the GH was able to bring the aircraft to a bonus region for 77% of maps within a feasible computational time lower than 1 second. In the MILP model, the time spent was about four minutes since it guarantees optimality of the solution found. Due to such high computational time, a strategy involving nearby routes pre-calculated was defined from the MILP which was very promising. In experiments involving flight simulator, different wind conditions were tested and it was found that even under such conditions the methods developed have managed to execute the landing safely [Result]. The work presented collaborates with the safety of Unmanned Aerial Vehicles and with the proposal of mathematical models that represent the aircraft under critical situations. The methods, in general, were promising since they brought the aircraft to execute a safe landing within a low computational time as shown by offline simulations, flight simulator and real flight [Conclusion]. The main contributions are: fault modeling, system architecture planner routes and linear model for emergency landing. [Contribution].
|
208 |
Hybrid qualitative state plan problem and mission planning with UAVs / Planejamento ótimo de missões para veículos aéreos não tripuladosMárcio da Silva Arantes 11 August 2017 (has links)
This paper aims to present the thesis developed in the Doctoral Programin Computer Science and Computational Mathematics of the ICMC/USP. The thesis theme seeks to advance the state of the art by solving the problems of scalability and representation present in mission planning algorithms for Unmanned Aerial Vehicle (UAV). Techniques based on mathematical programming and evolutionary computation are proposed. Articles have been published, submitted or they are in final stages of preparation.These studies report the most significant advances in the representation and scalability of this problem. Mission planners worked on the thesis deal with stochastic problems in non-convex environments,where collision risks or failures in mission planning are treated and limited to a tolerated value. The advances in the representation allowed to solve violations in the risks present in the original literature modeling, besides making the models more realistic when incorporating aspects such as effects of the air resistance. Efficient mathematical modeling techniques allowed to advance from a Mixed Integer Nonlinear Programming (MINLP) model, originally proposed in the literature, to a Mixed Integer Linear Programming (MILP) problem. Modeling as a MILP led to problem solving more efficiently through the branch-and-algorithm. The proposed new representations resulted in improvements from scalability, solving more complex problems within a shorter computational time. In addition, advances in scalability are even more effective when techniques combining mathematical programming and metaheuristics have been applied to the problem. / O presente documento tem por objetivo apresentar a tese desenvolvida no Programade Doutorado em Ciência da Computação e Matemática Computacional do ICMC/USP. O tema da tese busca avançar o estado da arte ao resolver os problemas de escalabilidade e representação presentes em algoritmos de planejamento para missões com Veículos Aéreos Não Tripulados (VANTs). Técnicas baseadas em programação matemática e computação evolutiva são propostas. Artigos foram publicados, submetidos ou se encontram em fase final de elaboração. Esses trabalhos reportamos avanços mais significativos obtidos na representação e escalabilidade deste problema.Os planejadores de missão trabalhados na tese lidam com problemas estocásticos em ambientes não convexos, onde os riscos de colisão ou falhas no planejamento da missão são tratados e limitados a um valor tolerado. Os avanços na representação permitiram solucionar violações nos riscos presentes na modelagem original, além de tornar os modelos mais realistas ao incorporar aspectos como efeitos da resistência do ar. Para isso, técnicas eficientes de modelagem matemática permitiram avançar de um modelo de Programação Não-Linear Inteira Mista(PNLIM), originalmente proposto na literatura, para um problema de Programação Linear Inteira Mista (PLIM). A modelagem como um PLIM levou à resolução do problema de forma mais eficiente através do algoritmo branch-and-cut. As novas representações propostas resultaram em melhorias na escalabilidade, solucionando problemas mais complexos em um tempo computacional menor.Além disso,os avanços em escalabilidade mostraram-se mais efetivos quando técnicas combinando programação matemática e metaheurísticas foram aplicadas ao problema.
|
209 |
Genetické programování - Java implementace / Genetic programming - Java implementationTomaštík, Marek January 2013 (has links)
This Master´s thesis implements computer program in Java, useful for automatic model generating, specially in symbolic regression problem. Thesis includes short description of genetic programming (GP) and own implementation with advanced GP operands (non-destructive operations, elitism, exptression reduction). Mathematical model is generating by symbolic regression, exacly for choosen data set. For functioning check are used test tasks. Optimal settings is found for choosen GP parameters.
|
210 |
Evoluční model s učením (LEM) pro optimalizační úlohy / Learnable Evolution Model for Optimization (LEM)Weiss, Martin January 2011 (has links)
Numerical optimization of multimodal or otherwise nontrivial functions has stayed around the peak of the interest of many researchers for a long time. One of the promising methods that appeared is the hybrid approach of the Learnable Evolution Model that combines the well-established ways of artificial intelligence and machine learning with recently popular and efective methods of evolutionary programming. In this work, the method itself was reviewed with respect to what has been already implemented and tested and several possible new implementations of the method were proposed and some of them consequently implemented. The resulting program was then tested against a set of chosen nontrivial real-valued functions and its results were compared to those achieved with EDA algorithms.
|
Page generated in 0.1424 seconds