Spelling suggestions: "subject:"exact"" "subject:"axact""
71 |
Steady State Response of Thin-walled Members Under Harmonic ForcesMohammed Ali, Hjaji 12 April 2013 (has links)
The steady state response of thin-walled members subjected to harmonic forces is investigated in the present study. The governing differential equations of motion and associated boundary conditions are derived from the Hamilton variational principle. The harmonic form of the applied forces is exploited to eliminate the need to discretize the problem in the time domain, resulting in computational efficiency.
The formulation is based on a generalization of the Timoshenko-Vlasov beam theory and accounts for warping effects, shear deformation effects due to bending and non-uniform warping, translational and rotary inertial effects and captures flexural-torsional coupling arising in asymmetric cross-sections.
Six of the resulting seven field equations are observed to be fully coupled for asymmetric cross-sections while the equation of longitudinal motion is observed to be uncoupled. Separate closed form solutions are provided for the cases of (i) doubly symmetric cross sections, (ii) monosymmetric cross-sections, and (iii) asymmetric cross-sections. The closed-form solutions are provided for cantilever and simply-supported boundary conditions.
A family of shape functions is then developed based on the exact solution of the homogeneous field equations and then used to formulate a series of super-convergent finite beam elements. The resulting two-noded beam elements are shown to successfully capture the static and dynamic responses of thin-walled members. The finite elements developed involve no special discretization errors normally encountered in other finite element formulations and provide results in excellent agreement with those based on other established finite elements with a minimal number of degrees of freedom. The formulation is also capable to predict the natural frequencies and mode-shapes of the structural members.
Comparisons with non-shear deformable beam solutions demonstrate the importance of shear deformation effects within short-span members subjected to harmonic loads with higher exciting frequencies. Comparisons with shell element solution results demonstrate that distortional effects are more pronounced in cantilevers with short spans.
A generalized stress extraction scheme from the finite element formulation is then developed. Also, a generalization of the analysis procedure to accommodate multiple loads with distinct exciting frequencies is established. The study is concluded with design examples which illustrate the applicability of the formulation, in conjunction with established principles of fatigue design, in determining the fatigue life of steel members subjected to multiple harmonic forces.
|
72 |
A New Optimality Measure for Distance Dominating SetsSimjour, Narges January 2006 (has links)
We study the problem of finding the smallest power of an input graph that has <em>k</em> disjoint dominating sets, where the <em>i</em>th power of an input graph <em>G</em> is constructed by adding edges between pairs of vertices in <em>G</em> at distance <em>i</em> or less, and a subset of vertices in a graph <em>G</em> is a dominating set if and only if every vertex in <em>G</em> is adjacent to a vertex in this subset.
The problem is a different view of the <em>d</em>-domatic number problem in which the goal is to find the maximum number of disjoint dominating sets in the <em>d</em>th power of the input graph.
This problem is motivated by applications in multi-facility location and distributed networks. In the facility location framework, for instance, there are <em>k</em> types of services that all clients in different regions of a city should receive. A graph representing the map of regions in the city is given where the nodes of the graph represent regions and neighboring regions are connected by edges. The problem is how to establish facility servers in the city (each region can host at most one server) such that every client in the city can access a facility server in its region or in a region in the neighborhood. Since it may not be possible to find a facility location satisfying this condition, "a region in the neighborhood" required in the question is modified to "a region at the minimum possible distance <em>d</em>".
In this thesis, we study the connection of the above-mentioned problem with similar problems including the domatic number problem and the <em>d</em>-domatic number problem. We show that the problem is NP-complete for any fixed <em>k</em> greater than two even when the input graph is restricted to split graphs, <em>2</em>-connected graphs, or planar bipartite graphs of degree four. In addition, the problem is in P for bounded tree-width graphs, when considering <em>k</em> as a constant, and for strongly chordal graphs, for any <em>k</em>. Then, we provide a slightly simpler proof for a known upper bound for the problem. We also develop an exact (exponential) algorithm for the problem, running in time <em>O</em>(2. 73<sup><em>n</em></sup>). Moreover, we prove that the problem cannot be approximated within ratio smaller than <em>2</em> even for split graphs, <em>2</em>-connected graphs, and planar bipartite graphs of degree four. We propose a greedy <em>3</em>-approximation algorithm for the problem in the general case, and other approximation ratios for permutation graphs, distance-hereditary graphs, cocomparability graphs, dually chordal graphs, and chordal graphs. Finally, we list some directions for future work.
|
73 |
A New Optimality Measure for Distance Dominating SetsSimjour, Narges January 2006 (has links)
We study the problem of finding the smallest power of an input graph that has <em>k</em> disjoint dominating sets, where the <em>i</em>th power of an input graph <em>G</em> is constructed by adding edges between pairs of vertices in <em>G</em> at distance <em>i</em> or less, and a subset of vertices in a graph <em>G</em> is a dominating set if and only if every vertex in <em>G</em> is adjacent to a vertex in this subset.
The problem is a different view of the <em>d</em>-domatic number problem in which the goal is to find the maximum number of disjoint dominating sets in the <em>d</em>th power of the input graph.
This problem is motivated by applications in multi-facility location and distributed networks. In the facility location framework, for instance, there are <em>k</em> types of services that all clients in different regions of a city should receive. A graph representing the map of regions in the city is given where the nodes of the graph represent regions and neighboring regions are connected by edges. The problem is how to establish facility servers in the city (each region can host at most one server) such that every client in the city can access a facility server in its region or in a region in the neighborhood. Since it may not be possible to find a facility location satisfying this condition, "a region in the neighborhood" required in the question is modified to "a region at the minimum possible distance <em>d</em>".
In this thesis, we study the connection of the above-mentioned problem with similar problems including the domatic number problem and the <em>d</em>-domatic number problem. We show that the problem is NP-complete for any fixed <em>k</em> greater than two even when the input graph is restricted to split graphs, <em>2</em>-connected graphs, or planar bipartite graphs of degree four. In addition, the problem is in P for bounded tree-width graphs, when considering <em>k</em> as a constant, and for strongly chordal graphs, for any <em>k</em>. Then, we provide a slightly simpler proof for a known upper bound for the problem. We also develop an exact (exponential) algorithm for the problem, running in time <em>O</em>(2. 73<sup><em>n</em></sup>). Moreover, we prove that the problem cannot be approximated within ratio smaller than <em>2</em> even for split graphs, <em>2</em>-connected graphs, and planar bipartite graphs of degree four. We propose a greedy <em>3</em>-approximation algorithm for the problem in the general case, and other approximation ratios for permutation graphs, distance-hereditary graphs, cocomparability graphs, dually chordal graphs, and chordal graphs. Finally, we list some directions for future work.
|
74 |
Exact D-optimal Designs for First-order Trigonometric Regression Models on a Partial CircleSun, Yi-Ying 24 June 2011 (has links)
Recently, various approximate design problems for low-degree trigonometric regression models on a partial circle have been solved. In this paper we consider approximate and exact optimal design problems for first-order trigonometric regression models without intercept on a partial circle. We investigate the intricate geometry of the non-convex exact trigonometric moment set and provide characterizations of its boundary. Building on these results we obtain a complete solution of the exact D-optimal design problem. It is shown that the structure of the optimal designs depends on both the length of the design interval and the number of observations.
|
75 |
Exact D-optimal designs for mixture experiments in Scheffe's quadratic modelsWu, Shian-Chung 05 July 2006 (has links)
The exact D-optimal design problems for regression models has been in-vestigated in many literatures. Huang (1987) and Gaffke (1987) provided
a sufficient condition for the minimum sample size for an certain set of
candidate designs to be exact D-optimal for polynomial regression models
on a compact interval. In this work we consider a mixture experiment with
q nonnegative components, where the proportions of components are sub-
ject to the simplex restriction $sum_{i=1}^q x_i =1$, $x_i ¡Ù 0$. The exact D-optimal designs for mixture experiments for Scheffe¡¦s quadratic models are investigated. Based on results in Kiefer (1961) results about the exact D-optimal designs for mixture models with two or three ingredients are provided and numerical verifications for models with ingredients between four and nine are presented.
|
76 |
D-optimal designs for linear and quadratic polynomial modelsChen, Ya-Hui 12 June 2003 (has links)
This paper discusses the approximate and the exact n-point D-optimal design problems for the common multivariate linear and quadratic polynomial regression on some convex design spaces. For the linear polynomial regression, the design space considered are q-simplex, q-ball and convex hull of a set of finite points. It is shown that the approximate and the exact n-point
D-optimal designs are concentrated on the extreme points of the design space. The structure of the optimal designs on regular polygons or regular polyhedra is also discussed. For the
quadratic polynomial regression, the design space considered is a q-ball. The configuration of the approximate and the exact n-point D-optimal designs for quadratic model in two variables
on a disk are investigated.
|
77 |
Coordinated Control of HVDC Links in Transmission SystemsEriksson, Robert January 2011 (has links)
Dynamic security limits the power transfer capacity between regions and therefore has an economic impact. The power modulation control of high-voltage direct current (HVDC) links can improve the dynamic security of the power system. Having several HVDC links in a system creates the opportunity to coordinate such control, and coordination also ensures that negative interactions do not occur among the controllable devices. This thesis aims to increase dynamic security by coordinating HVDC links, as an alternative to decreasing the transfer capacity. This thesis contributes four control approaches for increasing the dynamic stability, based on feedforward control, adaptive control, optimal control, and exact-feedback linearization control. Depending on the available measurements, dynamic system model, and system topology, one of the developed methods can be applied. The wide-area measurement system provides the central controller with real-time data and sends control signals to the HVDC links. The feedforward controller applies rapid power dispatch, and the strategy used here is to link the N-1 criterion between two systems. The adaptive controller uses the modal analysis approach; based on forecasted load paths, the controller gains are adaptively adjusted to maximize the damping in the system. The optimal controller is designed based on an estimated reduced-order model; system identification develops the model based on the system response. The exact-feedback linearization approach uses a pre-feedback loop to cancel the nonlinearities; a stabilizing controller is designed for the remaining linear system. The conclusion is that coordinating the HVDC links improves the dynamic stability, which makes it possible to increase the transfer capacity. This conclusion is also supported by simulations of each control approach. / QC 20110302
|
78 |
Using Three Different Categorical Data Analysis Techniques to Detect Differential Item FunctioningStephens-Bonty, Torie Amelia 16 May 2008 (has links)
Diversity in the population along with the diversity of testing usage has resulted in smaller identified groups of test takers. In addition, computer adaptive testing sometimes results in a relatively small number of items being used for a particular assessment. The need and use for statistical techniques that are able to effectively detect differential item functioning (DIF) when the population is small and or the assessment is short is necessary. Identification of empirically biased items is a crucial step in creating equitable and construct-valid assessments. Parshall and Miller (1995) compared the conventional asymptotic Mantel-Haenszel (MH) with the exact test (ET) for the detection of DIF with small sample sizes. Several studies have since compared the performance of MH to logistic regression (LR) under a variety of conditions. Both Swaminathan and Rogers (1990), and Hildalgo and López-Pina (2004) demonstrated that MH and LR were comparable in their detection of items with DIF. This study followed by comparing the performance of the MH, the ET, and LR performance when both the sample size is small and test length is short. The purpose of this Monte Carlo simulation study was to expand on the research done by Parshall and Miller (1995) by examining power and power with effect size measures for each of the three DIF detection procedures. The following variables were manipulated in this study: focal group sample size, percent of items with DIF, and magnitude of DIF. For each condition, a small reference group size of 200 was utilized as well as a short, 10-item test. The results demonstrated that in general, LR was slightly more powerful in detecting items with DIF. In most conditions, however, power was well below the acceptable rate of 80%. As the size of the focal group and the magnitude of DIF increased, the three procedures were more likely to reach acceptable power. Also, all three procedures demonstrated the highest power for the most discriminating item. Collectively, the results from this research provide information in the area of small sample size and DIF detection.
|
79 |
Analyzing the Combination of Polymorphisms Associating with Antidepressant Response by Exact Conditional TestMa, Baofu 08 August 2005 (has links)
Genetic factors have been shown to be involved in etiology of a poor response to the antidepressant treatment with sufficient dosage and duration. Our goal was to identify the role of polymorphisms in the poor response to the treatment. To this end, 5 functional polymorphisms in 109 patients diagnosed with unipolar, major depressive disorder are analyzed. Due to the small sample size, exact conditional tests are utilized to analyze the contingency table. The data analysis involves: (1) Exact test for conditional independence in a high dimensional contingency table; (2) Marginal independence test; (3) Exact test for three-way interactions. The efficiency of program always limits the application of exact test. The appropriate methods for enumerating exact tables are the key to improve the efficiency of programs. The algorithm of enumerating the exact tables is also introduced.
|
80 |
Steady State Response of Thin-walled Members Under Harmonic ForcesMohammed Ali, Hjaji 12 April 2013 (has links)
The steady state response of thin-walled members subjected to harmonic forces is investigated in the present study. The governing differential equations of motion and associated boundary conditions are derived from the Hamilton variational principle. The harmonic form of the applied forces is exploited to eliminate the need to discretize the problem in the time domain, resulting in computational efficiency.
The formulation is based on a generalization of the Timoshenko-Vlasov beam theory and accounts for warping effects, shear deformation effects due to bending and non-uniform warping, translational and rotary inertial effects and captures flexural-torsional coupling arising in asymmetric cross-sections.
Six of the resulting seven field equations are observed to be fully coupled for asymmetric cross-sections while the equation of longitudinal motion is observed to be uncoupled. Separate closed form solutions are provided for the cases of (i) doubly symmetric cross sections, (ii) monosymmetric cross-sections, and (iii) asymmetric cross-sections. The closed-form solutions are provided for cantilever and simply-supported boundary conditions.
A family of shape functions is then developed based on the exact solution of the homogeneous field equations and then used to formulate a series of super-convergent finite beam elements. The resulting two-noded beam elements are shown to successfully capture the static and dynamic responses of thin-walled members. The finite elements developed involve no special discretization errors normally encountered in other finite element formulations and provide results in excellent agreement with those based on other established finite elements with a minimal number of degrees of freedom. The formulation is also capable to predict the natural frequencies and mode-shapes of the structural members.
Comparisons with non-shear deformable beam solutions demonstrate the importance of shear deformation effects within short-span members subjected to harmonic loads with higher exciting frequencies. Comparisons with shell element solution results demonstrate that distortional effects are more pronounced in cantilevers with short spans.
A generalized stress extraction scheme from the finite element formulation is then developed. Also, a generalization of the analysis procedure to accommodate multiple loads with distinct exciting frequencies is established. The study is concluded with design examples which illustrate the applicability of the formulation, in conjunction with established principles of fatigue design, in determining the fatigue life of steel members subjected to multiple harmonic forces.
|
Page generated in 0.0296 seconds