• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 64
  • 35
  • 10
  • 9
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 368
  • 44
  • 40
  • 37
  • 37
  • 35
  • 34
  • 32
  • 30
  • 29
  • 27
  • 25
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Propriedades eletrônicas de sistemas conjugados: importância da troca exata / Electronic properties of conjugated systems role of exact exchange

José Maximiano Fernandes Pinheiro Junior 02 June 2014 (has links)
Polímeros conjugados semicondutores tem atraído grande interesse nas últimas décadas devido às possíveis aplicações como componentes ativos em aplicações optoeletrônicas. A adequação destes semicondutores orgânicos para a fabricação de dispositivos depende do entendimento e controle de propriedades eletrônicas básicas: gap fundamental (Eg) e potencial de ionização (IP). Nesse contexto, estudos teóricos baseados em cálculos de primeiros princípios tem se mostrado muito úteis, uma vez que possibilitam a simulação de processos físicos em condições ideais, onde se pode analisar as propriedades eletrônicas de polímeros desconsiderando efeitos do ambiente ou desordem estrutural. A Teoria do Funcional da Densidade (DFT) tem se tornado o método mais comum para o cálculo da estrutura eletrônica do estado fundamental de uma ampla variedade de materiais orgânicos complexos. Embora cálculos DFT baseados na diferença de energias totais tem sido aplicados com sucesso para estimar IPs de moléculas pequenas, este método falha nas propriedades de sistemas conjugados longos. Realmente, a capacidade preditiva da DFT padrão com respeito as propriedades espectroscópicas é frequentemente limitada, entretanto o tratamento adequado das excitações eletrônicas através de abordagens de muitos corpos é ainda muito difícil para materiais orgânicos complexos. Funcionais híbridos que misturam uma fração () de troca exata (EX) não-local ao correspondente semi-local representam uma boa alternativa, embora a quantidade ideal de EX seja, em geral, dependente do sistema. Neste trabalho, adotamos um esquema não-empírico baseado na aproximação G0W0 para identificar o valor ótimo de para o funcional híbrido PBE no qual a correção de autoenergia para o orbital mais alto ocupado (HOMO) de Kohn-Sham generalisado é minimizado. Estudamos, com base nessa estratégia, a dependência com o comprimento das propriedades eletrônicas básicas em uma família de oligômeros conjugados 1D de trans-poliacetileno (TPA). Nossos cálculos mostram que a fração EX ótima (dependente do tamanho) incorporada ao PBEh reproduz com precisão os IPs experimentais determinados em fase gasosa, / Semiconducting conjugated polymers have attracted considerable interest over the past decades due to the promising applications as active components for optoelectronic applications. The suitability of such organic semiconductors for device fabrication relies on quantitative understanding and control of basic electronic properties: fundamental gap (Eg) and ionization potential (IP). In this context, theoretical studies based on first principles approaches have proven useful, through simulating physical processes in ideal conditions, in which one might analyse the electronic properties of polymers apart from the effects of the surrounding environment or structural disorder. Density Functional Theory (DFT) has become an usual choice for calculating the ground state electronic structure of a wide variety of complex organic materials. Although DFT calculations based on total energy differences have been successfully applied to estimate IPs of small molecules, they fail for properties of long conjugated systems. Indeed, the predictive ability of standard DFT with respect to spectroscopic properties is often limited, however a proper treatment of the electronic excitations through many-body approaches is still very difficult for complex organic materials. Hybrid functionals that mix a fraction (_) of nonlocal exact exchange (EX) with the semilocal counterpart represent a good alternative, although the ideal amount of EX is usually system dependent. In this work, we adopt a non-empirical scheme based on the G0W0 approximation to identify the optimum _ value for the PBE hybrid functional for which the self-energy correction to the generalized Kohn-Sham highest occupied molecular orbital (HOMO) is minimized. Based on this strategy we study the size dependence of the basic electronic properties in a family of 1D _-conjugated oligomers of trans-polyacetylene (TPA). Our calculations demonstrate that the size dependent optimal EX fraction incorporated in PBEh accurately reproduces IPs from experimental gas phase data, although no particular constraint has been imposed a priori. Furthermore, we note that the optimum _-value decreases exponen tially with chain length going from _ w0.85 for the smaller oligomer (ethylene, n=1) up to _ w0.75 extrapolated for an isolated TPA chain. The accuracy of our optimized PBEh in predicting IPs and Eg is superior to other conventional mean field approaches, as demonstrated for a selected set of conjugated molecules such as acenes and phenylenes. As a result, we can obtain good estimations for the energy barriers of electron transfer in organic/organic interfaces. On the other extreme, we analyse the influence of exact exchange on the electronic structure of the prototypical metal system gold (Au), commonly used as electrode in organic devices. In this case, we confirm the expected result that the insertion of even a small fraction of EX into PBE functional distorts the Au band structure, worsening the description of electronic properties compared to regular PBE. We then proceed to analyse the factibility of studying polymer/metal interface systems using pure DFT. Our calculations reveal that the result is too system-dependent: for the TPA/Au(111) interface, an artificial charge transfer takes place at interface due to an underestimation of the IPs of the conjugated system inherent to the underlying DFT approximation. Finally, our study emphasizes the importance of a physically motivated choice of EX fraction in hybrid functionals for accurately predicting both ionization potentials and fundamental gaps of organic semiconductors relevant for nanoelectronics.
32

Modeling wind turbine blades by geometrically-exact beam and shell elements: a comparative approach. / Modelagem estrutural de pás de turbinas eólicas por meio de elementos de viga e casca: uma abordagem comparativa.

Celso Jaco Faccio Júnior 19 June 2017 (has links)
The total wind power capacity installed in the world has substantially grown during the last few years, mainly due to the increasing number of horizontal axis wind turbines (HAWT). Consequently, a big effort was employed to increase HAWT\'s power capacity, which is directly associated to the size of blades. Then, novel designs of blades may lead to very fexible structures, susceptive to large deformation, not only during extreme events, but also for operational conditions. In this context, this thesis aims to compare two geometrically nonlinear structural modeling approaches that handle large deformation of blade structures: 3D geometrically-exact beam and shell finite element models. Regarding the beam model, due to geometric complexity of typical cross-sections of wind turbine blades it is adopted a theory that allows creation of arbitrary multicellular cross-sections. Two typical blade geometries are tested, and comparisons between the models are done in statics and dynamics, always inducing large deformation and exploring the accuracy limits of beam models, when compared to shells. Results showed that the beam and shell models present very similar behavior, except when violations occur on the beam formulation hypothesis, such as when shell local buckling phenomena takes place. / A capacidade total de energia eólica instalada no mundo cresceu substancialmente nos últimos anos, principalmente devido ao número crescente de turbinas eólicas de eixo horizontal. Consequentemente, um grande esforço foi empregado com o intuito de aumentar a capacidade de produção das turbinas eólicas, que está diretamente associada ao tamanho das pás. Assim, surgiram projetos inovadores quanto à concepção de pás de turbinas eólicas levando a estruturas bastante flexíveis, susceptíveis a grandes deslocamentos, não apenas em eventos extremos, mas também em condições normais de operação. Nesse contexto, a presente dissertação tem por objetivo comparar duas abordagens de modelos estruturais geometricamente não-lineares capazes de lidar com grandes deslocamentos de pás de turbinas eólicas: elementos finitos geometricamente exatos 3D de vigas e cascas. Em relação ao modelo de viga, devido à complexidade geométrica das seções transversais típicas de pás de turbinas eólicas, adota-se uma teoria que permite a criação de seções transversais arbitrárias multicelulares. Duas geometrias de pás s~ao testadas e comparações entre os modelos s~ao feitas em análises estáticas e dinâmicas, sempre induzindo grandes deslocamentos e explorando os limites de precisão do modelo de viga, quando comparado ao modelo de cascas. Os resultados indicam que os modelos de viga e casca apresentam comportamento muito similar, exceto quando ocorrem violações em hipóteses do modelo de viga, tal como quando ocorre flambagem local do modelo de casca.
33

On WKB theoretic transformations for Painleve transcendents on degenerate Stokes segments / 退化したStokes segment上におけるパンルヴェ超越函数のWKB解析的変換について

Iwaki, Kohei 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18046号 / 理博第3924号 / 新制||理||1566(附属図書館) / 30904 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 竹井 義次, 教授 岡本 久, 教授 熊谷 隆 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
34

Exact Markov Chain Monte Carlo with Likelihood Approximations for Functional Linear Models

Smith, Corey James 28 September 2018 (has links)
No description available.
35

Optimering av zonindelning för robotgräsklippare med hjälp av olika Exact cellular decomposition metoder / Optimizing zone division for robotic lawn mowers using different Exact cellular decomposition methods : With a Coverage Path Planning method

Weinsjö, Åsa January 2023 (has links)
No description available.
36

Bond Patterns in the Ground States of Quasi-One Dimensional 1/4-Filled Organic Superconductors

Ward, Andrew Bryan 09 May 2015 (has links)
Organic conductors are of considerable interest to the condensed matter community. In contrast to conventional metal conductors, these organic materials allow for large variability in their construction giving both quasi-one and two dimensional behavior. Organic superconductors also give useful insight into the properties of general superconductivity as well as insight into the properties of strongly correlated electronic materials. These materials exhibit interesting phenomena like spin-Peierls, antiferromagnetic, and superconducting phases. The aim of this thesis is not only to inform the reader of various studies into organic superconductors but also to advance research into these materials through massively parallel numerical methods. This thesis will cover two studies: a quantum Monte Carlo study on an infinite one-dimensional chain and an exact diagonalization study on a 16-site two-dimensional lattice. These studies will be used to better understand the charge and bond behavior of quasi-one dimensional 1/4illed organic superconductors.
37

Efficiently Solving the Exact Cover Problem in OpenMP

Hall, Leo January 2023 (has links)
The exact cover problem is an NP-complete problem with many widespread use cases such as crew scheduling, railway scheduling, benchmarking as well as having applications in set theory. Existing algorithms can be slow when dealing with large datasets however. To solve this problem in a quick manner this thesis uses a new method based on an existing algorithm called Algorithm X utilizing parallelization with the task construct of OpenMP to produce better results, at best providing a speedup of 4.5 when compared to a serial optimized implementation of Algorithm X. Since creating child tasks through the task construct causes additional overhead this thesis examines the effect granularity has on the solver by varying how many child tasks should be created before opting to solve the rest of the problem serially. The optimal number of child tasks is found to be very low when using a high amount of cores and vice versa when using fewer cores. Since the new method created for this thesis can solve the exact cover problem faster than Algorithm X it can prove to be beneficial when solving the problems mentioned earlier.
38

Patents as Loan Collateral in Sweden : An empirical analysis of what patent characteristics matter for collateralization

Bracht, Felix January 2017 (has links)
This study analyses empirically what patent characteristics matter for collateralization. In accordance with the finance literature, loan collateral is determined by the liquidation value of the asset which in turn depends on the three factors "physical attributes of the asset", "number of alternative users" and "financial strength of alternative users". Hence, the study is focusing on patent characteristics influencing the three factors of the liquidation value. To control for firm effects of the patent pledging firms, a treatment group of pledged patents and a comparison group of unpledged patents have been matched based on firm characteristics of the patent owner. The subsequent empirical analysis revealed that patent characteristics related to the physical attributes of patents enhancing their redeployability matter for collateralization. Patent characteristics related to the market liquidity measuring the financial strength of alternative users, are insignificant. Furthermore, the study confirms the additional function of patents as source of finance by offering them for loan collateral. Especially small and young firms, scare of tangible assets pledge patents for receiving debt finance.
39

Using MPI One-Sided Communication for Parallel Sudoku Solving

Aili, Henrik January 2023 (has links)
This thesis investigates the scalability of parallel Sudoku solving using Donald Knuth’s Dancing Links and Algorithm X with two different MPI communication methods: MPI One-Sided Communication and MPI Send-Receive. The study compares the performance of the two communication approaches and finds that MPI One-Sided Communication exhibits better scalability in terms of speedup and efficiency. The research contributes to the understanding of parallel Sudoku solving and provides insights into the suitability of MPI One-Sided Communication for this task. The results highlight the advantages of using MPI One-Sided Communication over MPI Send-Receive, emphasizing its superior performance in parallel Sudoku solving scenarios. This research lays the foundation for future investigations in distributed computing environments and facilitates advancements in parallel Sudoku solving algorithms.
40

Robust Exact Algorithms for the Euclidean Bipartite Matching Problem

Gattani, Akshaykumar Gopalkrishna 06 July 2023 (has links)
The minimum cost bipartite matching problem is a well-studied optimization problem in computer science and operations research, with wide-ranging applications in fields such as machine learning, economics, transportation, logistics and biology. A special instance of this problem is the computation of the p-Wasserstein distance which we define next. Given a complete bipartite graph with two disjoint sets of n points in d-dimensional Euclidean space and an integer p ≥ 1, let the cost of an edge be the p-th power of the Euclidean distance between its endpoints. The objective of this problem is to find a minimum-cost matching in this complete bipartite graph. The Hungarian algorithm is a classical method that solves this problem in O(n^3) time. There are many algorithms that have a run time better than that of the Hungarian algorithm if the graphs have non-negative integer edge costs bounded by C. Since the input points have real-valued coordinates and the Euclidean distances can be irrational, such algorithms only return an approximate matching. Thus, the Hungarian algorithm remains the fastest known algorithm to compute an exact matching. In this thesis, we implement a new algorithm in the divide and conquer framework that computes the exact p-Wasserstein distance and has a run time asymptotically better than the Hungarian algorithm for stochastic point sets. Inspired by the techniques used in the algorithm, we also design an alternate version of the Hungarian algorithm that uses a grid- based approach. Our experimental analysis shows that both of our algorithms significantly outperform the classical Hungarian algorithm. / Master of Science / Suppose we have two sets of equal number of items and a list of compatible pairs of items, where a pair is considered compatible if its items belong to different sets. A perfect matching is a subset of compatible pairs where each item is paired with exactly one other item. When trying to find a perfect matching, there may be multiple options, and minimizing the cost of the perfect matching is often desired. This is referred to as the minimum cost bipartite matching problem, which is extensively studied due to its importance in algorithmic theory and operations research. A special instance of this problem is the calculation of the p- Wasserstein distance. It has many practical applications in fields such as machine learning, economics, transportation, logistics and biology. The Hungarian algorithm is the only known algorithm that can compute the exact p-Wasserstein distance. Therefore, our focus is to develop exact algorithms for this problem that perform better than the Hungarian algorithm and can scale efficiently to large datasets.

Page generated in 0.0964 seconds