• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 20
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 405
  • 405
  • 224
  • 212
  • 200
  • 189
  • 181
  • 133
  • 67
  • 51
  • 49
  • 42
  • 38
  • 37
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Preliminary Scale of Reference Values for Evaluating Reactive Strength Index-Modified in Male and Female NCAA Division I Athletes

Sole, Christopher J., Suchomel, Timothy J., Stone, Michael H. 29 October 2018 (has links)
The purpose of this analysis was to construct a preliminary scale of reference values for reactive strength index-modified (RSImod). Countermovement jump data from 151 National Collegiate Athletic Association (NCAA) Division I collegiate athletes (male n = 76; female n = 75) were analyzed. Using percentiles, scales for both male and female samples were constructed. For further analysis, athletes were separated into four performance groups based on RSImod and comparisons of jump height (JH), and time to takeoff (TTT) were performed. RSImod values ranged from 0.208 to 0.704 and 0.135 to 0.553 in males and females, respectively. Males had greater RSImod (p < 0.001, d = 1.15) and JH (p < 0.001, d = 1.41) as compared to females. No statistically significant difference was observed for TTT between males and females (p = 0.909, d = 0.02). Only JH was found to be statistically different between all performance groups. For TTT no statistical differences were observed when comparing the top two and middle two groups for males and top two, bottom two, and middle two groups for females. Similarities in TTT between sexes and across performance groups suggests JH is a primary factor contributing to differences in RSImod. The results of this analysis provide practitioners with additional insight as well as a scale of reference values for evaluating RSImod scores in collegiate athletes.
342

The Effect of Altering Body Posture and Barbell Position on the Between-Session Reliability of Force-Time Curve Characteristics in the Isometric Mid-Thigh Pull

Guppy, Stuart N., Brady, Claire J., Kotani, Yosuke, Stone, Michael H., Medic, Nikola, Haff, Guy Gregory 30 November 2018 (has links)
Seventeen strength and power athletes (n = 11 males, 6 females; height: 177.5 ± 7.0 cm, 165.8 ± 11.4 cm; body mass: 90.0 ± 14.1 kg, 66.4 ± 13.9 kg; age: 30.6 ± 10.4 years, 30.8 ± 8.7 years), who regularly performed weightlifting movements during their resistance training programs, were recruited to examine the effect of altering body posture and barbell position on the between-session reliability of force-time characteristics generated in the isometric mid-thigh pull (IMTP). After participants were familiarised with the testing protocol, they undertook two testing sessions which were separated by seven days. In each session, the participants performed three maximal IMTP trials in each of the four testing positions examined, with the order of testing randomized. In each position, no significant differences were found between sessions for all force-time characteristics (p = >0.05). Peak force (PF), time-specific force (F50, F90, F150, F200, F250) and IMP time-bands (0–50, 0–90, 0–150, 0–200, 0–250 ms) were reliable across each of the four testing positions (ICC ≥ 0.7, CV ≤ 15%). Time to peak force, peak RFD, RFD time-bands (0–50, 0–90, 0–150, 0–200, 0–250 ms) and peak IMP were unreliable regardless of the testing position used (ICC =15%). Overall, the use of body postures and barbell positions during the IMTP that do not correspond to the second pull of the clean have no adverse effect on the reliability of the force-time characteristics generated.
343

The Power Position: Characteristics and Coaching Points

Stone, Michael H., Hornsby, W. Guy, Cedar, William E.S., Mizuguchi, Satoshi 01 August 2018 (has links)
Excerpt:The power position is an integral position for a variety of power lifting movements. Athletes can develop their power position via an integrated approach involving sound exercise selection and purposeful instruction leading to enhanced strength and technique...
344

The Use of the Isometric Mid-thigh Pull in the Monitoring of Weightlifters: 25+ Years of Experience

Stone, Michael H., O'Bryant, Harold, Hornsby, Guy, Cunanan, Aaron, Mizuguchi, Satoshi, Suarez, Dylan, South, Mark, Marsh, DJ, Haff, Gregory, Ramsey, Michael, Beckham, George, Santana, Hugo, Wagle, John, Stone, Margaret, Pierce, Kyle 01 January 2019 (has links)
Currently, multi-joint, position-specific isometric tests (MJIT) are commonly used as part of the monitoring of an athlete’s progress. Strong associations between isometric force-time curve parameters have been found. Perhaps the most commonly used test is the isometric mid-thigh pull (IMTP): the IMTP was created in the early 1990s and its use has grown considerably since that time. One sport in which it has been used extensively from the early 1990s to the present, particularly by the authors, is weightlifting. The relationships between weightlifting performance and IMTP force-time characteristics are quite strong, particularly for RFD. The IMTP is not only useful in assessing a weightlifter’s performance but can also be used for monitoring fatigue.
345

Recommendations for Measurement and Management of an Elite Athlete

Sands, William, Cardinale, Marco, McNeal, Jeni, Murray, Steven, Sole, Christopher, Reed, Jacob, Apostolopoulos, Nikos, Stone, Michael H. 07 May 2019 (has links)
Athletes who merit the title ‘elite’ are rare and differ both quantitatively and qualitatively from athletes of lower qualifications. Serving and studying elite athletes may demand non-traditional approaches. Research involving elite athletes suffers because of the typical nomothetic requirements for large sample sizes and other statistical assumptions that do not apply to this population. Ideographic research uses single-athlete study designs, trend analyses, and statistical process control. Single-athlete designs seek to measure differences in repeated measurements under prescribed conditions, and trend analyses may permit systematic monitoring and prediction of future outcomes. Statistical process control uses control charting and other methods from management systems to assess and modify training processes in near real-time. These methods bring assessment and process control into the real world of elite athletics.
346

Phase- Specific Changes in Rate of Force Development and Muscle Morphology throughout a Block Periodized Training Cycle in Weightlifters

Suarez, Dylan G., Mizuguchi, Satoshi, Hornsby, William Guy, Cunanan, Aaron J., Marsh, Donald J., Stone, Michael H. 28 May 2019 (has links)
The purpose of this study was to investigate the kinetic and morphological adaptations that occur during distinct phases of a block periodized training cycle in weightlifters. Athlete monitoring data from nine experienced collegiate weightlifters was used. Isometric mid-thigh pull (IMTP) and ultrasonography (US) results were compared to examine the effects of three specific phases of a training cycle leading up to a competition. During the high volume strength-endurance phase (SE) small depressions in rate of force development (RFD) but statistically significant (p ≤ 0.05) increases in vastus lateralis cross-sectional area (CSA), and body mass (BM) were observed. The lower volume higher intensity strength-power phase (SP) caused RFD to rebound above pre-training cycle values despite statistically significant reductions in CSA. Small to moderate increases only in the earlier RFD time bands (ms) occurred during the peak/taper phase (PT) while CSA and BM were maintained. Changes in IMTP RFD and CSA from US reflected the expected adaptations of block periodized training phases. Changes in early (ms) and late (≥150 ms) RFD time bands may not occur proportionally throughout different training phases. Small increases in RFD and CSA can be expected in well-trained weightlifters throughout a single block periodized training cycle.
347

Cell Free DNA as a Marker of Training Status in Weightlifters

Gentles, Jeremy A., Hornsby, William G., Coniglio, Christine L., Dotterweich, Andy R., Miller, Jon A., Stuart, Charles A., Stone, Michael H. 01 January 2017 (has links)
The purpose of this investigation was to elucidate the changes in cf-DNA as it relates to fluctuations in resistance training workloads and intensities. The relationship between cell free DNA (cf-DNA), C-reactive protein (CRP), creatine kinase (CK), testosterone (T), cortisol (C), testosterone-cortisol ratio (T:C), body mass and body composition were also examined. Eight weightlifters (5 males and 3 females, age = 25 ± 3.5 yr, body mass = 88.3 ± 22.7 kg, height = 173.8 ±8.4 cm) volunteered to participate in this study. Venous blood samples, body mass and body composition were taken six times, each corresponding to the end of a training phase. CK (p = 0.018, η² = 0.409) and CK %Δ (p < 0.001, η² = 0.594) were the only biochemical variables to reach statistical significance at any point. A number of statistically significant correlations were found among variables. VLD4wk was related to CK %Δ (r = 0.86), VLD4wk %Δ was related CK %Δ (r = 0.86) and TID1wk was related to CRP (r = 0.83). cf-DNA %Δ was correlated with CRP and CRP %Δ (r = 0.83 and 0.86, respectively). CRP and CRP %Δ were correlated with BF % (r = 0.94 and 0.92, respectively). CK and CK %Δ were both related to T:C (r = 0.94 and 0.89, respectively) and T:C %Δ (r = 0.87 and 0.86, respectively). The correlation between cf-DNA and CRP suggests that cf-DNA may be a valuable indicator of inflammation in weightlifters.
348

The Influence of Strength in Load-Velocity Relationships in the Back Squat

Light, Thaddeus 01 August 2019 (has links)
Load-velocity relationships may vary between people of different strength levels and across different loads. The purpose of this dissertation was to investigate how external loads influence the velocity characteristics of the back squat exercise, and the influence of strength on these variables. Healthy male students with a history of resistance training completed repetitions at specified intensities of their estimated one-repetition maximum (1RM) until they reached 1RM. Back squat 3D motion analysis was captured using four Vicon T010 cameras (Vicon Motion Systems Ltd.; Oxford, UK) and Vicon Nexus 1.8.5 software. Data were transported into R custom coding statistical analysis software (version 3.5.2; The R Foundation) to calculate velocity analyses which determined mean and peak concentric (MCV, PCV) and eccentric (MEV, PEV) values. Participants were grouped by their relative strength (body mass/1RM) in the back squat, as well as their ability to move often prescribed loads with greater speed (63-70%1RM, 83-87%1RM). Between-groups comparisons were made for MCV at all loading conditions, and correlational relationships between all velocity measures (MEV, PEV, MCV, PCV) were examined for each group. For all subjects, there was a significant effect for relative intensity (%1RM) on MCV, but only for the groups organized by MCV at 63-70%1RM and 83-87%1RM was there a between-subjects effect for group. Correlational analyses between velocity measurements during concentric and eccentric phase of the back squat showed a tendency for high relationships (r = 0.5-0.69) between all phases that weakened as the relative intensity increased. These differences were illustrated uniquely between subject grouping conditions. These results indicate that load-velocity characteristics of the back squat cannot necessarily be positively related to strength level in the movement, and that profiling athletes by their velocities at specific relative intensities could be an effective means of organization.
349

Kinetic and Kinematic Characteristics of Accentuated Eccentric Loading

Wagle, John 01 May 2019 (has links) (PDF)
The current investigation was an examination of the kinetic and kinematic characteristics of the back squat using accentuated eccentric loading (AEL) and cluster set programming strategies. Trained male subjects (age = 26.1 ± 4.1 years, height = 183.5 ± 4.3 cm, body mass = 92.5 ± 10.5 kg, back squat to body mass ratio = 1.8 ± 0.3) volunteered to complete four different load condition sessions involving traditionally loaded straight sets (TL), traditionally loaded cluster sets (TLC), AEL cluster sets (AEC), and AEL straight sets where only the first repetition of each set used eccentric overload (AEL1). The use of AEL increased eccentric work (WECC) and eccentric rate of force development (RFDECC) but did not result in the expected potentiation of subsequent concentric output. Interrepetition rest, however, appears to have the largest influence on concentric peak power (PP), rate of force development (RFDCON), and average velocity (MV). Additionally, the current study was an investigation of the efficacy of novel methods of ultrasonography technique that can be applied to monitoring training response. Compared to lying measures of the vastus lateralis (VL), standing ultrasonography measures of muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA) were more strongly and abundantly correlated with dynamic and isometric strength performance. Finally, the present study was an exploration of the genetic underpinnings of performance outcomes and muscle phenotypic characteristics. The polymorphisms of two candidate genes (ACTN3, ACE) typical of strength-power athletes were used. ACTN3 RR tended to result in greater type II fiber CSA and alter maximal strength, while ACE DD tended to influence RFD through the presence of more favorable type II-to-type I CSA ratios. Overall, the current investigation provided valuable insight into the characteristics of advanced programming tactics. Furthermore, the ultrasonography measurement and genetic aspects of the current investigation may serve as a framework to inform monitoring practice and generate hypotheses related to the training process.
350

Comparisons Between Movement Onset Identification Methods Used in Isometric Mid-Thigh Pull Test

Liu, Junshi 01 December 2018 (has links) (PDF)
This dissertation aimed to explore the usefulness of using force derivatives for onset detection in the isometric mid-thigh pull test. First, we examined applications of three differential calculus principles, first and second derivative, and curvature using visual detection as a reference under different baseline conditions. Second, we compared the best derivative method to a threshold-based method using visual detection as a reference. Results of our first investigation showed trivial differences between many differential calculus methods and visual detection. However, statistical differences exceeding a trivial effect was observed when instantaneous force and rate of force develop were examined. Through the first investigation, first and second derivative emerged as possible viable methods for baseline with a countermovement and for all other baseline conditions, respectively. Results of the second investigation showed similarities to the first investigation with respect to onset time. However, examination of instantaneous force and rate of force development indicated that a threshold-based method tended to overestimate compared to visual detection and a first and second derivative combined method. In fact, the difference between visual detection and the first and second derivative combined method ranged from trivial to moderate under all baseline conditions while the threshold-based method often reached a large difference. Overestimation by the threshold-method was more pronounced for rate of force development. In conclusion, while not perfect, the first and second derivative 3 combined method appears to hold possible practical potential and may be used as an assistant method for entry-level sport scientist plus using visual detection for obvious erroneous values.

Page generated in 0.0549 seconds