• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 28
  • 25
  • 15
  • 14
  • 11
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 257
  • 28
  • 26
  • 25
  • 25
  • 24
  • 19
  • 18
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Neural contributions to maximal muscle performance

Buckthorpe, Matthew January 2014 (has links)
Neural activation is thought to be essential for the expression of maximal muscle performance, but the exact contribution of neural mechanisms such as the level of agonist, antagonist and stabiliser muscle activation to muscle strength is not fully understood. Explosive neuromuscular performance, including the ability to initiate (the electromechanical delay, EMD) and develop force rapidly (termed, rate of force development, RFD) are considered essential for the performance of explosive sporting tasks and joint stabilisation and thus injury avoidance. The thesis aimed to improve our understanding of the contribution of neural factors to muscle performance, with a specific focus on explosive neuromuscular performance. The work in this thesis utilised a range of approaches to achieve this aim. Initially, the association between muscle activation and rate of force development and EMD was established. Comparison of unilateral and bilateral actions was then undertaken. Finally interventions with the aim to both negatively affect and improve muscle strength, which included fatigue and resistance training (RT), respectively was undertaken and the neural contributions to changes in performance established. Agonist activation during the early phase of voluntary force production was shown to be an important determinant of voluntary EMD, explaining 41% of its inter-individual variability. Agonist activation was an important determinant of early, but not late phase RFD. Use of bilateral actions resulted in a reduction in explosive strength, which was thought to be due to differences in postural stability between unilateral and bilateral strength tasks. The level of stabiliser activation was strongly related to the level of agonist activation during the early phase of explosive force development and had a high association with explosive force production. Task-specific adaptations following isoinertial RT, specifically, the greater increase in isoinertial lifting strength than maximal isometric strength were due to training-specific changes in the level of agonist activation. High-intensity fatigue achieved a more substantial decline in explosive than maximal isometric strength, and this was postulated to be due to neural mechanisms, specifically decreased agonist activation. This work provides an in depth analysis of the neural contributions to maximal muscle performance.
152

Mesoscale computational prediction and quantification of thermomechanical ignition behavior of polymer-bonded explosives (PBXs)

Barua, Ananda 20 September 2013 (has links)
This research aims at understanding the conditions that lead to reaction initiation of polymer-bonded explosives (PBXs) as they undergo mechanical and thermal processes subsequent to impact. To analyze this issue, a cohesive finite element method (CFEM) based finite deformation framework is developed and used to quantify the thermomechanical response of PBXs at the microstructure level. This framework incorporates the effects of large deformation, thermomechanical coupling, failure in the forms of micro-cracks in both bulk constituents and along grain/matrix interfaces, and frictional heating. A novel criterion for the ignition of heterogeneous energetic materials under impact loading is developed, which is used to quantify the critical impact velocity, critical time to ignition, and critical input work at ignition for non-shock conditions as functions of microstructure of granular HMX and PBX. A threshold relation between impact velocity and critical input energy at ignition for non-shock loading is developed, involving an energy cutoff and permitting the effects of microstructure and loading to be accounted for. Finally, a novel approach for computationally predicting and quantifying the stochasticity of the ignition process in energetic materials is developed, allowing prediction of the critical time to ignition and the critical impact velocity below which no ignition occurs based on basic material properties and microstructure attributes. Results are cast in the form of the Weibull distribution and used to establish microstructure-ignition behavior relations.
153

Explosive emission cathodes for high power microwave devices: gas evolution studies

Schlise, Charles A. 06 1900 (has links)
Approved for public release, distribution is unlimited / Present-day high power microwave devices suffer from a lack of reliable, reproducible cathodes for generating the requisite GW-level electron beam in a vacuum. Standard explosive emission cathode pulse durations have been limited to 10's or 100's of ns due to the expansion of cathode-generated plasma and the ensuing impedance collapse that debilitates microwave output. Traditional thermionic cathodes do not suffer from this drawback of plasma generation, but have not yet been able to provide the required emission current densities explosive emission cathodes are capable of. It is expected that if the plasma could be made cooler and less dense, explosive emission would be more stable. Cesium iodide (CsI) has been found to slow the impedance collapse in many explosive emission cathodes. Herein we will experimentally examine diode impedance collapse, gas production, and cathode conditioning in an effort to perform an evaluation of explosive cathode performance in a typical thermionic electron gun environment. These results will then be used to help demarcate the parameter space over which these CsI-coated carbon fiber cathodes are viable candidates for the electron beam source in next-generation high power microwave devices. / Lieutenant, United States Navy
154

Hamstrings muscle anatomy and function, and implications for strain injury

Evangelidis, Pavlos January 2015 (has links)
The main aim of this thesis was to examine hamstrings anatomy and its influence on knee flexor muscle function in healthy young men. A secondary aim was to better understand the implications of hamstrings anatomy and function, and their variability, in relation to the risk of strain injury. The functional and conventional H:Q ratios (examined up to high angular velocities) as well as the knee joint angle-specific isometric H:Q ratio exhibited good test-retest reliability at joint positions that closely replicated the conditions of high injury risk. Football players did not exhibit any differences in angle-specific or peak torque H:Q ratios compared to recreationally active controls. Knee extensor and flexor strength, relative to body mass, of footballers and controls was similar for all velocities, except concentric knee flexor strength at 400° s-1 (footballers +40%; P < 0.01). Muscle volume explained 30-71% and 38-58% of the differences between individuals in knee extensors and flexors torque respectively across a range of velocities. A moderate correlation was also found between the volume of these antagonistic muscle groups (R2= 0.41). The relative volume of the knee extensors and flexors explained ~20% of the variance in the isometric H:Q ratio and ~31% in the high velocity functional H:Q ratio. Biceps femoris long head exhibited a balanced myosin heavy chain isoform distribution (47.1% type I and 52.9 % total type II) in young healthy men, while BFlh muscle composition was not related to any measure of knee flexor maximal or explosive strength. Biceps femoris long head proximal aponeurosis area varied considerably between participants (>4-fold) and was not related to biceps femoris long head maximal anatomical cross-sectional area (r= 0.04, P= 0.83). Consequently, the aponeurosis:muscle area ratio exhibited 6-fold variability (range, 0.53 to 3.09; CV= 32.5%). Aponeurosis size was not related to isometric or eccentric knee flexion strength. The findings of this thesis suggest that the main anatomical factor that contributes to knee flexors function in vivo is hamstrings muscle size, while muscle composition and aponeurosis size do not seem to have a significant influence. The high inter-individual variability of the biceps femoris long head proximal aponeurosis size suggests that a disproportionately small aponeurosis may be a risk factor for strain injury. In contrast, biceps femoris long head muscle composition does not seem to explain the high incidence of strain injuries in this muscle. Quadriceps and hamstrings muscle size imbalances contribute to functional imbalances that may predispose to strain injury and correction of any size imbalance may be a useful injury prevention tool. Finally, regular exposure to football training and match-play does not seem to influence the balance of muscle strength around the knee joint.
155

Rozcvičení v atletice a jeho vliv na explozivní sílu / The effect of Warm Up Protocols on Explosive Power Performance in Track and Field

Mašková, Alžběta January 2017 (has links)
Title: The effect of Warm Up Protocols on Explosive Power Performance in Track and Field Objectives: The main aim of this thesis was to compare three types of warm up protocols and their effects on explosive power performance. Methods: This thesis tested 43 students of UK FTVS, who visited Athletic Conditioning lessons. The group consisted of 28 men (height 183,2+-/5,6 cm) and 15 women (166,3 +-/5,7 cm) aged 20-23 years. There was six measuring sessions separated by a week off. They performed a 800 m aerobic warm up mean run, followed by one of three types of warm-up protocols (static, dynamic, balance). Each of the warm-up protocol was performed two times in the opposite order. The experiment examined the explosive power of lower limbs and upper body/limbs. Performance score were recorded from vertical jump, a ball throw, and medicine ball front throw. Results: The thesis did not confirm any of the hypotheses. It was found that the active static stretching had a positive medium effect on medicine ball front throw by Cohen scale effect size compared to the active dynamic and the active balance warm-up protocol. Other tests did not prove any significant changes, positive or negative, of any warm up protocols. Keywords: Dynamic warm-up, Static warm-up, Balance warm- up, Testing, Explosive Power
156

The effect of high intensity resisted cycling with and without explosive resistance training on performance in competitive cyclists

McQuillan, Joe Unknown Date (has links)
Training studies involving competitive runners and road cyclists have shown substantial gains in sprint and endurance performance when sessions of high-intensity interval training were added to their usual training in the competitive phase of a season. Further research has shown large performance benefits in sprint and endurance power (7 - 9%) when cyclists combined explosive single-leg jumps with cycling-specific high-intensity interval training during a competitive season. The aim of the present study was to assess the contribution of the jumps to the gains in performance in competitive cyclists in a randomized control trial.The training protocol for the control group was based on previous experimental work in which the control group (n=8) completed cycle specific interval training followed by a series of explosive single-leg jumps. The experimental group (n=7) carried out the same cycle specific interval training but did not participate in the explosive single-leg jumps. While the current study did not use a true control group, the investigation was carried out in the knowledge that a combination of high intensity interval cycling and explosive single-leg jumps causes changes positive changes in performance. Participants took part in 10 x 30-min sessions consisting four sets of high intensity intermittent cycling (4 x 30-s maximum efforts at 50 - 60 min-1 alternating with 30-s recovery). Between each set of 4 x 30 s sprints the control (ballistic) group carried out one set of explosive single-leg jumps (20 for each leg), while the experimental (continuous) group cycled for 20 s at 50 - 60 min-1.Before and after the training period all cyclists completed an incremental peak power test for assessment of VO2max, lactate threshold, exercise economy and peak power, a 30 s Wingate sprint test and a 20 km time-trial. Relative to the control group the percent mean changes (±90% confidence limits) in the experimental group were: power at 4-mM lactate, -4.2 (±6.3); VO2max, -3.1 (±3.7); mean time-trial power, -0.7 (± 4.7); peak incremental power, -1.7; (±5.0); power at 80% max heart rate, -2.8; (±5.6); Wingate peak power, -4.2; (±7.8). We conclude that high-intensity training may improve performance but the combination of high-intensity training and explosive resistance training in the competitive phase is likely to produce greater gains in trained cyclists than high intensity cycling alone.
157

Instabilité explosive des ondes magneto-élastiques

Yevstafyev, Oleksandr 17 June 2011 (has links) (PDF)
Les instabilités paramétriques non linéaires (NL) ont été observées sur les ondes magnéto-élastiques dans le cas d'un couplage de trois quasi-phonons sous pompage électromagnétique. La théorie en prédit une dynamique supercritique explosive, mais limitée expérimentalement par le décalage de fréquence dû aux fortes nonlinéarités. La dynamique supercritique des instabilités paramétriques NL est étudiée dans deux matériaux antiferromagnétiques "plan facile" (AFEP): l'hématite α-Fe2O3 et le borate de fer FeBO3. Ces matériaux possèdent une très grande NL acoustique effective en raison du couplage magnéto-élastique élevé. Les mécanismes de limitation de la dynamique explosive ont été analysés à l'aide de l'approximation anharmonique. La compensation du décalage fréquentiel NL par une modulation de phase singulière du pompage a été proposée et théoriquement vérifiée, puis utilisée pour l'observation expérimentale de la dynamique supercritique explosive des excitations de trois quasi-phonons dans les résonateurs magnéto-élastiques. Les études sur FeBO3 ont été réalisées dans la gamme de température 77 K - 293 K où les paramètres magnéto-élastiques du cristal varient de façon significative. Un modèle fortement non linéaire des excitations de trois quasi-phonons dans les AFEPs a été développé. Les simulations numériques sont en accord avec les résultats expérimentaux. Les études théoriques de couplage de trois ondes magnéto-élastiques progressives ont été effectuées sur la base de modèles théoriques prenant en compte la non-linéarité cubique des cristaux AFEP réels. Les simulations numériques prévoient un comportement explosif et une localisation spatiale des triades générées
158

Compréhension des mécanismes régissant le fonctionnement d'un tube hyperfréquence de type MILO (Magnetically Insulated Line Oscillator).

Cousin, Richard 18 April 2005 (has links) (PDF)
Le MILO (Magnetically Insulated Line Oscillator) est une source micro-onde de forte puissance capable de produire des puissances crêtes supérieures au gigawatt à des fréquences de quelques gigahertz. Ce tube hyperfréquence est un oscillateur à champs électrique et magnétique croisés qui ne requiert pas de structure externe pour produire le champ magnétique nécessaire au guidage du faisceau d'électrons. Ceux-ci sont produits par émission explosive à partir d'une cathode de type velours et sont accélérés par la différence de potentiel dans l'espace anode – cathode. L'anode constitue une cavité hyperfréquence capable d'emmagasiner de l'énergie électromagnétique, transférée depuis le faisceau d'électrons. Ainsi, la géométrie du tube fixe les conditions de propagation des électrons dans le vide (isolement magnétique) et les conditions de synchronisme permettant les échanges d'énergie dans la structure hyperfréquence. Cette thèse vise à détailler les caractéristiques de fonctionnement d'un MILO compact, c'est-à-dire à l'échelle ½ en comparaison des dispositifs existants, en vue d'un développement expérimental. Pour cela nous avons démontré la faisabilité d'un modèle réduit en redimensionnant tous les paramètres géométriques. Des simulations en géométrie 2D et 3D sous code PIC – Electromagnétique MAGIC ont permis de caractériser, d'une part, la structure hyperfréquence afin d'optimiser les couplages cavité – guide d'onde de sortie pour l'extraction du rayonnement et de démontrer, d'autre part, les contraintes physiques limitant la puissance micro-onde de sortie. Le prototype ainsi optimisé a conduit à la conception d'un dispositif expérimental où les tests préliminaires à froid (sans faisceau) ont montré une bonne concordance avec les prévisions théoriques. Cette thèse ouvre la voie à l'expérimentation et au développement d'une source micro-onde de puissance compacte.
159

Thermal Bimorph Micro-Cantilever Based Nano-Calorimeter for Sensing of Energetic Materials

Kang, Seokwon 2012 May 1900 (has links)
The objective of this study is to develop a robust portable nano-calorimeter sensor for detection of energetic materials, primarily explosives, combustible materials and propellants. A micro-cantilever sensor array is actuated thermally using bi-morph structure consisting of gold (Au: 400 nm) and silicon nitride (Si3N4: 600 nm) thin film layers of sub-micron thickness. An array of micro-heaters is integrated with the microcantilevers at their base. On electrically activating the micro-heaters at different actuation currents the microcantilevers undergo thermo-mechanical deformation, due to differential coefficient of thermal expansion. This deformation is tracked by monitoring the reflected ray from a laser illuminating the individual microcantilevers (i.e., using the optical lever principle). In the presence of explosive vapors, the change in bending response of microcantilever is affected by the induced thermal stresses arising from temperature changes due to adsorption and combustion reactions (catalyzed by the gold surface). A parametric study was performed for investigating the optimum values by varying the thickness and length in parallel with the heater power since the sensor sensitivity is enhanced by the optimum geometry as well as operating conditions for the sensor (e.g., temperature distribution within the microcantilever, power supply, concentration of the analyte, etc.). Also, for the geometry present in this study the nano-coatings of high thermal conductivity materials (e.g., Carbon Nanotubes: CNTs) over the microcantilever surface enables maximizing the thermally induced stress, which results in the enhancement of sensor sensitivity. For this purpose, CNTs are synthesized by post-growth method over the metal (e.g., Palladium Chloride: PdCl2) catalyst arrays pre-deposited by Dip-Pen Nanolithography (DPN) technique. The threshold current for differential actuation of the microcantilevers is correlated with the catalytic activity of a particular explosive (combustible vapor) over the metal (Au) catalysts and the corresponding vapor pressure. Numerical modeling is also explored to study the variation of temperature, species concentration and deflection of individual microcantilevers as a function of actuation current. Joule-heating in the resistive heating elements was coupled with the gaseous combustion at the heated surface to obtain the temperature profile and therefore the deflection of a microcantilever by calculating the thermally induced stress and strain relationship. The sensitivity of the threshold current of the sensor that is used for the specific detection and identification of individual explosives samples - is predicted to depend on the chemical kinetics and the vapor pressure. The simulation results showed similar trends with the experimental results for monitoring the bending response of the microcantilever sensors to explosive vapors (e.g., Acetone and 2-Propanol) as a function of the actuation current.
160

Experimental Study of the 22Ne(p,γ)23Na Reaction and its Implications for Novae Scenarios

Menzel, Marie-Luise 22 May 2013 (has links) (PDF)
The 22Ne(p,γ)23Na reaction belongs to the catalytic neon-sodium cycle and has an important role in the explosive hydrogen burning. The neon-sodium cycle takes place at temperatures of T = 0:1 - 0:5GK and is assumed to occur in di erent astrophysical systems: e.g. in novae, in super novae of type Ia and during the shell-burning of red giant branch stars. The implications of 22Ne(p,γ)23Na and the neon-sodium cycle in a nova scenario have been studied by using the nuclear network code libnucnet at GSI in Darmstadt. A nova is an outburst of matter in a binary system consisting of a white dwarf and a red giant star. It is therefore a representative phenomenon for explosive hydrogen burning. For the calculation of the nucleosynthesis during the nova outburst, the code libnucnet requires the initial mass composition of the novae partners, the temperature and density pro les of the nova explosion and the thermonuclear reaction rates of the participating reactions. In the following, the code determined the ow and the nal atomic abundance in the neon-sodium cycle during the entire nova process. Additionally, the in uence of the temperature pro le of the novae outburst as well as the thermonuclear reaction rate of the 22Ne(p,γ)23Na reaction on the nal atomic abundance in the outburst has been studied. A characteristic measure for the reactions in astrophysical environments is the thermonuclear reaction rate. The reaction rate of 22Ne(p,γ)23Na has still strong uncertainties in the temperature range of T = 0:03-0:3 GK. These uncertainties are based on insu cient upper limits of the resonance strengths as well as the possible existence of tentative states that are populated in the energy range of Elabp = 30 - 300 keV. The research presented in this thesis is dedicated to the experimental study of the 22Ne(p,γ)23Na reaction for an improved determination of the thermonuclear reaction rate. Furthermore, the implications of 22Ne(p,γ)23Na and the neon-sodium-cycle in novae scenarios are discussed. The data taking has been performed at the Laboratori Nazionali del Gran Sasso, Italy. This laboratory provides the LUNA facility (Laboratory for Underground Nuclear Astrophysics) for the measurement of small reaction cross sections. The LUNA facility includes a 400 kV ion accelerator, a windowless gas target system and a HPGe-detector. Based on the measurements of the 22Ne(p,γ)23Na reaction at LUNA, upper limits for the strengths of ve isolated resonances in the energy range of Elabp = 150 - 340 keV have been determined. For the nuclear resonance at Elabres = 186 keV, a positive resonance strength has been measured for the rst time in literature.

Page generated in 0.0369 seconds