Spelling suggestions: "subject:"exponential smoothing"" "subject:"exponential moothing""
41 |
Enhancing the Efficacy of Predictive Analytical Modeling in Operational Management Decision MakingNajmizadehbaghini, Hossein 08 1900 (has links)
In this work, we focus on enhancing the efficacy of predictive modeling in operational management decision making in two different settings: Essay 1 focuses on demand forecasting for the companies and the second study utilizes longitudinal data to analyze the illicit drug seizure and overdose deaths in the United States. In Essay 1, we utilize an operational system (newsvendor model) to evaluate the forecast method outcome and provide guidelines for forecast method (the exponential smoothing model) performance assessment and judgmental adjustments. To assess the forecast outcome, we consider not only the common forecast error minimization approach but also the profit maximization at the end of the forecast horizon. Including profit in our assessment enables us to determine if error minimization always results in maximum profit. We also look at the different levels of profit margin to analyze their impact on the forecasting method performance. Our study also investigates how different demand patterns influence maximizing the forecasting method performance. Our study shows that the exponential smoothing model family has a better performance in high-profit products, and the rate of decrease in performance versus demand uncertainty is higher in a stationary demand environment.In the second essay, we focus on illicit drug overdose death rate. Illicit drug overdose deaths are the leading cause of injury death in the United States. In 2017, overdose death reached the highest ever recorded level (70,237), and statistics show that it is a growing problem. The age adjusted rate of drug overdose deaths in 2017 (21.7 per 100,000) is 9.6% higher than the rate in 2016 (19.8 per 100,000) (U. S. Drug Enforcement Administration, 2018, p. V). Also, Marijuana consumption among youth has increased since 2009. The magnitude of the illegal drug trade and its resulting problems have led the government to produce large and comprehensive datasets on a variety of phenomena relating to illicit drugs. In this study, we utilize these datasets to examine how marijuana usage among youth influence excessive drug usage. We measure excessive drug usage in terms of drug overdose death rate per state. Our study shows that illegal marijuana consumption increases excessive drug use. Also, we analyze the pattern of most frequently seized illicit drugs and compare it with drugs that are most frequently involved in a drug overdose death. We further our analysis to study seizure patterns across layers of heroin and cocaine supply chain across states. This analysis reveals that most active layers of the heroin supply chain in the American market are retailers and wholesalers, while multi-kilo traffickers are the most active players in the cocaine supply chain. In summary, the studies in this dissertation explore the use of analytical, descriptive, and predictive models to detect patterns to improve efficacy and initiate better operational management decision making.
|
42 |
[pt] INSERÇÃO DE VARIÁVEIS EXÓGENAS NO MODELO HOLT-WINTERS COM MÚLTIPLOS CICLOS PARA PREVISÃO DE DADOS DE ALTA FREQUÊNCIA OBSERVACIONAL DE DEMANDA DE ENERGIA ELÉTRICA / [en] INTRODUCE EXOGENOUS VARIABLES IN HOLT-WINTERS EXPONENTIAL SMOOTHING WITH MULTIPLE SEASONAL PATTERNS HIGH FREQUENCY ELECTRICITY DEMAND OBSERVATIONS05 November 2021 (has links)
[pt] O objetivo deste trabalho é inserir variáveis exógenas no modelo Holt-Winters com múltiplos ciclos, genuinamente univariado. Serão usados dados horários de demanda de energia elétrica provenientes de uma cidade da região sudeste do Brasil e dados de temperatura, tanto em sua forma primitiva quanto derivada, por exemplo, indicadores de dias quentes, o chamado cooling degree days (CDD). Com isso, pretende-se melhorar o poder preditivo do modelo, gerando previsões com maior acurácia. / [en] The aim of this thesis is to insert exogenous variables in the model Holt-Winters with multiple cycles, genuinely univariate. Hourly data will be used for electricity demand from a city in southeastern Brazil and temperature data, both in its original form as derived, for example, indicators of hot days, cooling degree
days called (CDD). With this, we intend to improve the predictive power of the model, generating predictions with greater accuracy.
|
43 |
INTELLIGENT MULTIPLE-OBJECTIVE PROACTIVE ROUTING IN MANET WITH PREDICTIONS ON DELAY, ENERGY, AND LINK LIFETIMEGuo, Zhihao January 2008 (has links)
No description available.
|
44 |
[en] TECHNIQUES FOR DETECTION OF BIAS IN DEMAND FORECASTING: PERFORMANCE COMPARISON / [pt] TÉCNICAS PARA DETECÇÃO DE VIÉS EM PREVISÃO DE DEMANDA: COMPARAÇÃO DE DESEMPENHOSFELIPE SCHOEMER JARDIM 09 November 2021 (has links)
[pt] Em um mundo globalizado, em contínua transformação, são cada vez mais freqüentes mudanças no perfil da demanda. Se não detectadas rapidamente, elas podem gerar impactos negativos no progresso de um negócio devido à baixa qualidade nas previsões de venda, que começam a gerar valores sistematicamente acima ou abaixo da demanda real indicando a presença de viés. Para evitar esse cenário, técnicas formais para detecção de viés podem ser incorporadas ao processo de previsão de demanda. Diante desse quadro, a presente dissertação compara os desempenhos, via simulação, das principais técnicas formais de detecção de viés em previsão de demanda presentes na literatura. Nesse sentido, seis técnicas são identificadas e analisadas. Quatro são baseadas em estatísticas Tracking Signal e duas são adaptadas de técnicas de Controle Estatístico de Processos. Os modelos de previsão de demanda monitorados pelas técnicas em questão são os de séries temporais estruturadas, associados ao método de amortecimento exponencial simples e ao método de Holt, respectivamente, para séries com nível médio constante e séries com tendência. Três tipos de alterações no perfil da demanda – que acarretam em viés na previsão – são examinados. O primeiro consiste em mudanças no nível médio em séries temporais de nível médio constante. O segundo tipo também considera séries temporais de nível médio constante, porém com o foco em surgimentos de tendências. O terceiro viés consiste em mudanças na tendência em series temporais com tendência pré-incorporada. Entre os resultados obtidos, destaca-se a conclusão de que, para a maioria das situações estudadas, as técnicas baseadas nas estatísticas Tracking Signal possuem desempenho superior às demais técnicas com relação à eficiência na detecção de viés. / [en] In a globalized world, in continuous transformation, changes in the demand pattern are increasingly frequent. If not rapidly detected, they can have a negative and persistent impact in the wellbeing of a business due to continuously poor quality sales forecasts, which begin to generate values systematically above or below the actual demand indicating the presence of bias. To avoid this happening, statistical techniques can be incorporated in a prediction process with the objective known as bias detection in demand forecasting. Considering this situation, the present dissertation compares, through simulation, the efficiency performance of the main existing formal techniques of monitoring demand forecasting models, with the view of bias detection. Six of such techniques are identified and analyzed in this work. Four are based on Tracking Signal Statistics and two are adapted from the Statistical Process Control approach. The demand forecasting models monitored by the techniques in question can be classified as structured time series, for a constant level or trend pattern, and using both the simple exponential smoothing and the Holt s methods. Three types of changes in the demand pattern - which result in biased prediction - are examined. The first one focus on simulated changes on the average level of various constant times series. The second type also considered various constant times series, but now simulating the appearance of different trends. And the third refers to simulate changes in trends in various times series with pre-established trends. Among the results attained, one stands out: the techniques based on Tracking Signal Statistics - when compares to other methods - showed superior performance insofar as efficient bias detection in demand forecasting.
|
45 |
ARIMA demand forecasting by aggregationRostami Tabar, Bahman 10 December 2013 (has links) (PDF)
Demand forecasting performance is subject to the uncertainty underlying the time series an organisation is dealing with. There are many approaches that may be used to reduce demand uncertainty and consequently improve the forecasting (and inventory control) performance. An intuitively appealing such approach that is known to be effective is demand aggregation. One approach is to aggregate demand in lower-frequency 'time buckets'. Such an approach is often referred to, in the academic literature, as temporal aggregation. Another approach discussed in the literature is that associated with cross-sectional aggregation, which involves aggregating different time series to obtain higher level forecasts.This research discusses whether it is appropriate to use the original (not aggregated) data to generate a forecast or one should rather aggregate data first and then generate a forecast. This Ph.D. thesis reveals the conditions under which each approach leads to a superior performance as judged based on forecast accuracy. Throughout this work, it is assumed that the underlying structure of the demand time series follows an AutoRegressive Integrated Moving Average (ARIMA) process.In the first part of our1 research, the effect of temporal aggregation on demand forecasting is analysed. It is assumed that the non-aggregate demand follows an autoregressive moving average process of order one, ARMA(1,1). Additionally, the associated special cases of a first-order autoregressive process, AR(1) and a moving average process of order one, MA(1) are also considered, and a Single Exponential Smoothing (SES) procedure is used to forecast demand. These demand processes are often encountered in practice and SES is one of the standard estimators used in industry. Theoretical Mean Squared Error expressions are derived for the aggregate and the non-aggregate demand in order to contrast the relevant forecasting performances. The theoretical analysis is validated by an extensive numerical investigation and experimentation with an empirical dataset. The results indicate that performance improvements achieved through the aggregation approach are a function of the aggregation level, the smoothing constant value used for SES and the process parameters.In the second part of our research, the effect of cross-sectional aggregation on demand forecasting is evaluated. More specifically, the relative effectiveness of top-down (TD) and bottom-up (BU) approaches are compared for forecasting the aggregate and sub-aggregate demands. It is assumed that that the sub-aggregate demand follows either a ARMA(1,1) or a non-stationary Integrated Moving Average process of order one, IMA(1,1) and a SES procedure is used to extrapolate future requirements. Such demand processes are often encountered in practice and, as discussed above, SES is one of the standard estimators used in industry (in addition to being the optimal estimator for an IMA(1) process). Theoretical Mean Squared Errors are derived for the BU and TD approach in order to contrast the relevant forecasting performances. The theoretical analysis is supported by an extensive numerical investigation at both the aggregate and sub-aggregate levels in addition to empirically validating our findings on a real dataset from a European superstore. The results show that the superiority of each approach is a function of the series autocorrelation, the cross-correlation between series and the comparison level.Finally, for both parts of the research, valuable insights are offered to practitioners and an agenda for further research in this area is provided.
|
46 |
MODELOS DE SÉRIES TEMPORAIS APLICADOS A DADOS DE UMIDADE RELATIVA DO AR / MODELS OF TEMPORAL SERIES APPLIED TO AIR RELATIVE HUMIDITY DATATibulo, Cleiton 11 December 2014 (has links)
Time series model have been used in many areas of knowledge and have become a current necessity for companies to survive in a globalized and competitive market, as well as climatic factors that have always been a concern because of the different ways they interfere in human life. In this context, this work aims to present a comparison among the performances by the following models of time series: ARIMA, ARMAX and Exponential Smoothing, adjusted to air relative humidity (UR) and also to verify the volatility present in the series through non-linear models ARCH/GARCH, adjusted to residues of the ARIMA and ARMAX models. The data were collected from INMET from October, 1st to January, 22nd, 2014. In the comparison of the results and the selection of the best model, the criteria MAPE, EQM, MAD and SSE were used. The results showed that the model ARMAX(3,0), with the inclusion of exogenous variables produced better forecast results, compared to the other models SARMA(3,0)(1,1)12 and the Holt-Winters multiplicative. In the volatility study of the series via non-linear ARCH(1), adjusted to the quadrants of SARMA(3,0)(1,1)12 and ARMAX(3,0) residues, it was observed that the volatility does not tend to influence the future long-term observations. It was then concluded that the classes of models used and compared in this study, for data of a climatologic variable, showed a good performance and adjustment. We highlight the broad usage possibility in the techniques of temporal series when it is necessary to make forecasts and also to describe a temporal process, being able to be used as an efficient support tool in decision making. / Modelos de séries temporais vêm sendo empregados em diversas áreas do conhecimento e têm surgido como necessidade atual para empresas sobreviverem em um mercado globalizado e competitivo, bem como fatores climáticos sempre foram motivo de preocupação pelas diferentes formas que interferem na vida humana. Nesse contexto, o presente trabalho tem por objetivo apresentar uma comparação do desempenho das classes de modelos de séries temporais ARIMA, ARMAX e Alisamento Exponencial, ajustados a dados de umidade relativa do ar (UR) e verificar a volatilidade presente na série por meio de modelos não-lineares ARCH/GARCH ajustados aos resíduos dos modelos ARIMA e ARMAX. Os dados foram coletados junto ao INMET no período de 01 de outubro de 2001 a 22 de janeiro de 2014. Na comparação dos resultados e na seleção do melhor modelo foram utilizados os critérios MAPE, EQM, MAD e SSE. Os resultados mostraram que o modelo ARMAX(3,0) com a inclusão de variáveis exógenas produziu melhores resultados de previsão em relação aos seus concorrentes SARMA(3,0)(1,1)12 e o Holt-Winters multiplicativo. No estudo da volatilidade da série via modelo não-linear ARCH(1), ajustado aos quadrados dos resíduos dos modelos SARMA(3,0)(1,1)12 e ARMAX(3,0), observou-se que a volatilidade não tende a influenciar as observações futuras em longo prazo. Conclui-se que as classes de modelos utilizadas e comparadas neste estudo, para dados de uma variável climatológica, demonstraram bom desempenho e ajuste. Destaca-se a ampla possibilidade de utilização das técnicas de séries temporais quando se deseja fazer previsões e descrever um processo temporal, podendo ser utilizadas como ferramenta eficiente de apoio nas tomadas de decisão.
|
47 |
[en] INTERVENTION MODELS TO FORECAST MONTHLY DEMAND OF ELETRIC ENERGY, CONSIDERING THE RATIONING SCENERY / [pt] MODELOS DE INTERVENÇÃO PARA PREVISÃO MENSAL DE CONSUMO DE ENERGIA ELÉTRICA CONSIDERANDO CENÁRIOS PARA O RACIONAMENTOEVANDRO LUIZ MENDES 12 March 2003 (has links)
[pt] Nesta dissertação é desenvolvida uma metodologia para
previsão de demanda mensal de energia elétrica considerando
cenários de racionamento. A metodologia usada consiste em,
a partir das taxas de crescimento da série temporal,
identificar e eliminar os efeitos do racionamento de
energia elétrica através da aplicação de Modelos Lineares
Dinâmicos. São analisadas também estruturas de intervenção
nos modelos estatísticos de Box & Jenkins e Holt &
Winters. Os modelos são então comparados segundo alguns
critérios, basicamente no que tange à sua eficiência
preditiva. Conclui-se ao final sobre a eficiência da
metodologia proposta, dado a grande dificuldade para
solucionar o problema a partir dos modelos estatísticos de
Box & Jenkins e Holt & Winters. Esta solução é então
proposta como a mais viável para criar cenários de
racionamento e pósracionamento de energia para ser
utilizado por agentes do sistema elétrico nacional. / [en] In this dissertation, a methodology is developed to
forecast monthly demand of electric energy, considering the
rationing scenery. The methodology is based on, taking the
growth rate from the time series, identify and eliminate the
effects of electric energy rationing, using Dynamic Linear
Models. It is also analyzed intervention structures in the
statistics models of Box & Jenkins and Holt & Winters.
The models are compared according to some criterions,
mainly forecast accuracy. At the end, we concluded that the
methodology proposed is more efficient, due to the
difficult to solve the problem using the statistics models
with intervention. This solution is proposed as the best
among them to create scenery during the energy rationing
and after energy rationing, to be used by the national
electric system agents.
|
48 |
Modul pro dolování v časových řadách systému pro dolování z dat / Time-Serie Mining Module of a Data Mining SystemKlement, Ondřej January 2010 (has links)
The subject of this master's thesis is extension of existing data mining system. System will be extended by the module for the time series data mining. This thesis consists of common introduction to data mining issues and continues with time series analysis. Thesis then also contains some of the current tasks and algorithms used in time series data mining, follows by the concept of the implementation and description of the choosen mining method. Possible future system's improvments are disscused at the end of the paper.
|
49 |
Short-term forecasting of salinity intrusion in Ham Luong river, Ben Tre province using Simple Exponential Smoothing methodTran, Thai Thanh, Ngo, Quang Xuan, Ha, Hieu Hoang, Nguyen, Nhan Phan 13 May 2020 (has links)
Salinity intrusion in a river may have an adverse effect on the quality of life and can be perceived as a modern-day curse. Therefore, it is important to find technical ways to monitor and forecast salinity intrusion. In this paper, we designed a forecasting model using Simple Exponential Smoothing method (SES) which performs weekly salinity intrusion forecast in Ham Luong river (HLR), Ben Tre province based on historical data obtained from the Center for Hydro-meteorological forecasting of Ben Tre province. The results showed that the SES method provides an adequate predictive model for forecast of salinity intrusion in An Thuan, Son Doc, and Phu Khanh. However, the SES in My Hoa, An Hiep, and Vam Mon could be improved upon by another forecasting technique. This study suggests that the SES model is an easy-to-use modeling tool for water resource managers to obtain a quick preliminary assessment of salinity intrusion. / Xâm nhập mặn có thể gây tác động xấu đến đời sống con người, tuy nhiên nó hoàn toàn có thể dự báo được. Cho nên, một điều quan trọng là tìm được phương pháp kỹ thuật phù hợp để dự báo và giám sát xâm nhập mặn trên sông. Trong bài báo này, chúng tôi sử dụng phương pháp Simple Exponential Smoothing để dự báo xâm nhập mặn trên sông Hàm Luông, tỉnh Bến Tre. Kết quả cho thấy mô hình dự báo phù hợp cho các vị trí An Thuận, Sơn Đốc, và Phú Khánh. Tuy nhiên, các vị trí Mỹ Hóa, An Hiệp, và Vàm Mơn có thể tìm các phương pháp khác phù hợp hơn. Phương pháp Simple Exponential Smoothing rất dễ ứng dụng trong quản lý nguồn nước dựa vào việc cảnh báo xâm nhập mặn.
|
50 |
[en] ANALYSIS TECHNIQUES FOR CONTROLLING ELECTRIC POWER FOR HIGH FREQUENCY DATA: APPLICATION TO THE LOAD FORECASTING / [pt] ANÁLISE DE TÉCNICAS PARA CONTROLE DE ENERGIA ELÉTRICA PARA DADOS DE ALTA FREQUÊNCIA: APLICAÇÃO À PREVISÃO DE CARGAJULIO CESAR SIQUEIRA 08 January 2014 (has links)
[pt] O objetivo do presente trabalho é o desenvolvimento de um algoritmo
estatístico de previsão da potência transmitida pela usina geradora termelétrica de
Linhares, localizada no Espírito Santo, medida no ponto de entrada da rede da
concessionária regional, a ser integrado em plataforma composta por sistema
supervisório em tempo real em ambiente MS Windows. Para tal foram
comparadas as metodologias de Modelos Arima(p,d,q), regressão usando
polinômios ortogonais e técnicas de amortecimento exponencial para identificar a
mais adequada para a realização de previsões 5 passos-à-frente. Os dados
utilizados são provenientes de observações registradas a cada 5 minutos, contudo,
o alvo é produzir estas previsões para observações registradas a cada 5 segundos.
Os resíduos estimados do modelo ajustado foram analisados via gráficos de
controle para checar a estabilidade do processo. As previsões produzidas serão
usadas para subsidiar decisões dos operadores da usina, em tempo real, de forma a
evitar a ultrapassagem do limite de 200.000 kW por mais de quinze minutos. / [en] The objective of this study is to develop a statistical algorithm to predict
the power transmitted by a thermoelectric power plant in Linhares, located at
Espírito Santo state, measured at the entrance of the utility regional grid, which
will be integrated to a platform formed by a real time supervisor system
developed in MS Windows. To this end we compared Arima (p,d,q), Regression
using Orthogonal Polynomials and Exponential Smoothing techniques to identify
the best suited approach to make predictions five steps ahead. The data used are
observations recorded every 5 minutes, however, the target is to produce these
forecasts for observations recorded in every five seconds. The estimated residuals
of the fitted model were analysed via control charts to check on the stability of
the process. The forecasts produced by this model will be used to help not to
exceed the 200.000 kW energy generation upper bound for more than fifteen
minutes.
|
Page generated in 0.1084 seconds