• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 34
  • 18
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 1
  • Tagged with
  • 232
  • 232
  • 232
  • 64
  • 56
  • 53
  • 37
  • 35
  • 34
  • 33
  • 29
  • 28
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Průběžná lokalizace a mapování pomocí mobilního robotu / Simultaneous Localization and Mapping Using Mobile Robot

Neužil, Tomáš January 2008 (has links)
This work presents an overview of the simultaneous localisation and mapping (SLAM) problem in the mobile robotics. The Extended Kalman filter (EKF) based algorithm for localisation and mapping is proposed. For EKF algorithm the models of the skid steering mobile robot and the laser scanner are presented. The EKF algortihm is feature based algorithm, therefore the method for the landmark position determination was developed. This segmentation method is based on the clustering of the Radon transform space. Proposed SLAM algorithm was tested with real data measured with UTAR mobile platform. Achievments of the work are summarized in the conclusion of the proposed work and possible improvements of the components are suggested.
172

Algoritmy bezsnímačového řízení synchronního motoru s permanentními magnety / Permanent Magnet Synchronous Machine Sensorless Control Algorithms

Veselý, Libor January 2013 (has links)
Algorithms of sensorless control of surface permanent magnet synchronous motors are discussed in the dissertation thesis. A method for position and speed estimation in high-speed region based on model reference adaptive system is described. Furthermore, classical approach using Kalman filtering was verified. Kalman filter expected the rotor speed to be constant as a modification of model using variable speed approach. These algorithms are not able to work at low speed region, thus a new method was proposed. This method is designed on extended Kalman filtering and uses the model which describes the stator inductance changes in - coordinates. At motor start, knowledge of initial rotor setup is required. The algorithm for initial rotor angle using high frequencies injected into the motor was proposed.
173

Implementierung eines Mono-Kamera-SLAM Verfahrens zur visuell gestützten Navigation und Steuerung eines autonomen Luftschiffes

Lange, Sven 09 December 2007 (has links)
Kamerabasierte Verfahren zur Steuerung autonomer mobiler Roboter wurden in den letzten Jahren immer populärer. In dieser Arbeit wird der Einsatz eines Stereokamerasystems und eines Mono-Kamera-SLAM Verfahrens hinsichtlich der Unterstützung der Navigation eines autonomen Luftschiffes untersucht. Mit Hilfe von Sensordaten aus IMU, GPS und Kamera wird eine Positionsschätzung über eine Sensorfusion mit Hilfe des Extended und des Unscented Kalman Filters durchgeführt.
174

Extended and Unscented Kalman Filtering for Estimating Friction and Clamping Force in Threaded Fasteners

Al-Barghouthi, Mohammad January 2021 (has links)
Threaded fasteners tend to break and loosen when exposed to cyclic loads or potent temperature variations. Additionally, if the joint is held tightly to the structure, distortion will occur under thermal expansion issues. These complications can be prevented by identifying and regulating the clamping force to an appropriate degree – adapted to the properties of the joint. Torque-controlled tightening is a way of monitoring the clamping force, but it assumes constant friction and therefore has low accuracy, with an error of around 17% - 43%.This thesis investigates if the friction and clamping force can be estimated using the Extended and Unscented Kalman filters to increase the precision of the torque-controlled methodology. Before the investigation, data were collected for two widely used tightening strategies. The first tightening strategy is called Continuous Drive, where the angular velocity is kept at a constant speed while torque is increased. The second strategy is TurboTight, where the angular velocity starts at a very high speed and decreases with increased torque. The collected data were noisy and had to be filtered. A hybrid between a Butterworth lowpass filter and a Sliding Window was developed and exploited for noise cancellation.The investigations revealed that it was possible to use both the Extended and Unscented Kalman filers to estimate friction and clamping force in threaded fasteners. In Continuous Drive tightening, both the EKF and UKF performed well - with an averagequality factor of 81.87% and 88.38%, and with an average error (at max torque) of 3.54% and 4.09%, respectively. However, the TurboTight strategy was much more complex and had a higher order of statistical moments to account for. Thus, the UKF outperformed the EKF with an average quality factor of 93.02% relative to 24.49%, and with an average error (at max torque) of 3.50% compared to 4.19%
175

Fault detection for the Benfield process using a closed-loop subspace re-identification approach

Maree, Johannes Philippus 26 November 2009 (has links)
Closed-loop system identification and fault detection and isolation are the two fundamental building blocks of process monitoring. Efficient and accurate process monitoring increases plant availability and utilisation. This dissertation investigates a subspace system identification and fault detection methodology for the Benfield process, used by Sasol, Synfuels in Secunda, South Africa, to remove CO2 from CO2-rich tail gas. Subspace identification methods originated between system theory, geometry and numerical linear algebra which makes it a computationally efficient tool to estimate system parameters. Subspace identification methods are classified as Black-Box identification techniques, where it does not rely on a-priori process information and estimates the process model structure and order automatically. Typical subspace identification algorithms use non-parsimonious model formulation, with extra terms in the model that appear to be non-causal (stochastic noise components). These extra terms are included to conveniently perform subspace projection, but are the cause for inflated variance in the estimates, and partially responsible for the loss of closed-loop identifiably. The subspace identification methodology proposed in this dissertation incorporates two successive LQ decompositions to remove stochastic components and obtain state-space models of the plant respectively. The stability of the identified plant is further guaranteed by using the shift invariant property of the extended observability matrix by appending the shifted extended observability matrix by a block of zeros. It is shown that the spectral radius of the identified system matrices all lies within a unit boundary, when the system matrices are derived from the newly appended extended observability matrix. The proposed subspace identification methodology is validated and verified by re-identifying the Benfield process operating in closed-loop, with an RMPCT controller, using measured closed-loop process data. Models that have been identified from data measured from the Benfield process operating in closed-loop with an RMPCT controller produced validation data fits of 65% and higher. From residual analysis results, it was concluded that the proposed subspace identification method produce models that are accurate in predicting future outputs and represent a wide variety of process inputs. A parametric fault detection methodology is proposed that monitors the estimated system parameters as identified from the subspace identification methodology. The fault detection methodology is based on the monitoring of parameter discrepancies, where sporadic parameter deviations will be detected as faults. Extended Kalman filter theory is implemented to estimate system parameters, instead of system states, as new process data becomes readily available. The extended Kalman filter needs accurate initial parameter estimates and is thus periodically updated by the subspace identification methodology, as a new set of more accurate parameters have been identified. The proposed fault detection methodology is validated and verified by monitoring process behaviour of the Benfield process. Faults that were monitored for, and detected include foaming, flooding and sensor faults. Initial process parameters as identified from the subspace method can be tracked efficiently by using an extended Kalman filter. This enables the fault detection methodology to identify process parameter deviations, with a process parameter deviation sensitivity of 2% or higher. This means that a 2% parameter deviation will be detected which greatly enhances the fault detection efficiency and sensitivity. / Dissertation (MEng)--University of Pretoria, 2008. / Electrical, Electronic and Computer Engineering / unrestricted
176

[en] INFERENCE OF THE QUALITY OF DESTILLATION PRODUCTS USING ARTIFICIAL NEURAL NETS AND FILTER OF EXTENDED KALMAN / [pt] INFERÊNCIA DA QUALIDADE DE PRODUTOS DE DESTILAÇÃO UTILIZANDO REDES NEURAIS ARTIFICIAIS E FILTRO DE KALMAN ESTENDIDO

LEONARDO GUILHERME CAETANO CORREA 19 December 2005 (has links)
[pt] Atualmente cresce o interesse científico e industrial na elaboração de métodos de controle não lineares. Porém, estes modelos costumam ter difícil implementação e um custo elevado até que se obtenha uma ferramenta de controle confiável. Desta forma, estudos na área de métodos de apoio à decisão procuram desenvolver aplicações inteligentes com custos reduzidos, capazes de executar controles industriais avançados com excelentes resultados, como no caso da indústria petroquímica. Na destilação de derivados de petróleo, por exemplo, é comum fazer uso de análises laboratoriais de amostras para identificar se uma substância está com suas características físico-químicas dentro das normas internacionais de produção. Além disso, o laudo pericial desta análise permite regular os instrumentos da planta de produção para que se consiga um controle mais acurado do processo e, conseqüentemente, um produto final com maior qualidade. Entretanto, apesar da análise laboratorial ter maior acurácia nos resultados que avaliam a qualidade do produto final, exige, às vezes, muitas horas de análise, o que retarda o ajuste dos equipamentos de produção, reduzindo a eficiência do processo e aumentando o tempo de produção de certos produtos, que precisam ter sua composição, posteriormente, corrigida com outros reagentes. Outra desvantagem está relacionada aos custos de manutenção e calibração dos instrumentos localizados na área de produção, pois, como estes equipamentos estão instalados em ambientes hostis, normalmente sofrem uma degradação acelerada, o que pode gerar leituras de campo erradas, dificultando a ação dos operadores. Em contrapartida, dentre os métodos inteligentes mais aplicados em processos industriais químicos, destacam-se as redes neurais artificiais. Esta estrutura se inspira nos neurônios biológicos e no processamento paralelo do cérebro humano, tendo assim a capacidade de armazenar e utilizar o conhecimento experimental que for a ela apresentado. Apesar do bom resultado que a estrutura de redes neurais gera, existe uma desvantagem relacionada à necessidade de re-treinamento da rede quando o processo muda seu ponto de operação, ou seja, quando a matériaprima sofre algum tipo de mudança em suas características físico-químicas. Como solução para este problema, foi elaborado um método híbrido que busca reunir as vantagens de uma estrutura de redes neurais com a habilidade de um filtro estocástico, conhecido por filtro de Kalman estendido. Em termos práticos, o filtro atua em cima dos pesos sinápticos da rede neural, atualizando os mesmos em tempo real e permitindo assim que o sistema se adapte constantemente às variações de mudança de processo. O sistema também faz uso de pré-processamentos específicos para eliminar ruídos dos instrumentos de leitura, erros de escalas e incompatibilidade entre os sinais de entrada e saída do sistema, que foram armazenados em freqüências distintas; o primeiro em minutos e o segundo em horas. Além disso, foram aplicadas técnicas de seleção de variáveis para melhorar o desempenho da rede neural no que diz respeito ao erro de inferência e ao tempo de processamento. O desempenho do método foi avaliado em cada etapa elaborada através de diferentes grupos de testes utilizados para verificar o que cada uma delas agregou ao resultado final. O teste mais importante, executado para avaliar a resposta da metodologia proposta em relação a uma rede neural simples, foi o de mudança de processo. Para isso, a rede foi submetida a um grupo de teste com amostras dos sinais de saída somados a um sinal tipo rampa. Os experimentos mostraram que o sistema, utilizando redes neurais simples, apresentou um resultado com erros MAPE em torno de 1,66%. Por outro lado, ao utilizar redes neurais associadas ao filtro de Kalman estendido, o erro cai à metade, ficando em torno de 0,8%. Isto comprova que, além do filtro de Kalman não destruir a qualidade da rede neural original, ele consegue adaptá-la a mudanças de processo, permitindo, assim, que a variável de saída seja inferida adequadamente sem a necessidade de retreinamento da rede. / [en] Nowadays, scientific and industrial interest on the development of nonlinear control systems increases day after day. However, before these models become reliable, they must pass through a hard and expensive implementation process. In this way, studies involving decision support methods try to develop low cost intelligent applications to build up advanced industrial control systems with excellent results, as in the petrochemical industry. In the distillation of oil derivatives, for example, it is very common the use of laboratorial sample analysis to identify if a substance has its physical- chemistry characteristics in accordance to international production rules. Besides, the analyses results allow the adjustment of production plant instruments, so that the process reaches a thorough control, and, consequently, a final product with higher quality. However, although laboratory analyses are more accurate to evaluate final product quality, sometimes it demands many hours of analysis, delaying the adjustments in the production equipment. In this manner, the process efficiency is reduced and some products have its production period increased because they should have its composition corrected with other reagents. Another disadvantage is the equipments´ maintenance costs and calibration, since these instruments are installed in hostile environments that may cause unaccurate field measurements, affecting also operator´s action. On the other hand, among the most applied intelligent systems in chemical industry process are the artificial neural networks. Their structure is based on biological neurons and in the parallel processing of the human brain. Thus, they are capable of storing and employing experimental knowledge presented to it earlier. Despite good results presented by neural network structures, there is a disadvantage related to the need for retraining whenever the process changes its operational point, for example, when the raw material suffers any change on its physical-chemistry characteristics. The proposed solution for this problem is a hybrid method that joins the advantages of a neural network structure with the ability of a stochastic filter, known as extended Kalman filter. This filter acts in the synaptic weights, updating them online and allowing the system to constantly adapt itself to process changes. It also uses specific pre-processing methods to eliminate scale mistakes, noises in instruments readings and incompatibilities between system input and output, which are measured with different acquisition frequencies; the first one in minutes and the second one in hours. Besides, variable selection techniques were used to enhance neural network performance in terms of inference error and processing time. The method´s performance was evaluated in each process step through different test groups used to verify what each step contributes to the final result. The most important test, executed to analyse the system answer in relation to a simple neural network, was the one which simulated process changes. For that end, the network was submitted to a test group with output samples added to a ramp signal. Experiments demonstrated that a system using simple neural networks presented results with MAPE error of about 1,66%. On the other hand, when using neural networks associated to an extended Kalman filter, the error decreases to 0,8%. In this way, it´s confirmed that Kalman filter does not destroy the original neural network quality and also adapts it to process changes, allowing the output inference without the necessity of network retraining.
177

Visual simultaneous localization and mapping in a noisy static environment

Makhubela, J. K. 03 1900 (has links)
M. Tech. (Department of Information and Communication Technology, Faculty of Applied and Computer Sciences), Vaal University of Technology / Simultaneous Localization and Mapping (SLAM) has seen tremendous interest amongst the research community in recent years due to its ability to make the robot truly independent in navigation. Visual Simultaneous Localization and Mapping (VSLAM) is when an autonomous mobile robot is embedded with a vision sensor such as monocular, stereo vision, omnidirectional or Red Green Blue Depth (RGBD) camera to localize and map an unknown environment. The purpose of this research is to address the problem of environmental noise, such as light intensity in a static environment, which has been an issue that makes a Visual Simultaneous Localization and Mapping (VSLAM) system to be ineffective. In this study, we have introduced a Light Filtering Algorithm into the Visual Simultaneous Localization and Mapping (VSLAM) method to reduce the amount of noise in order to improve the robustness of the system in a static environment, together with the Extended Kalman Filter (EKF) algorithm for localization and mapping and A* algorithm for navigation. Simulation is utilized to execute experimental performance. Experimental results show a 60% landmark or landfeature detection of the total landmark or landfeature within a simulation environment and a root mean square error (RMSE) of 0.13m, which is minimal when compared with other Simultaneous Localization and Mapping (SLAM) systems from literature. The inclusion of a Light Filtering Algorithm has enabled the Visual Simultaneous Localization and Mapping (VSLAM) system to navigate in an obscure environment.
178

Filter-Based Slip Detection for a Complete-Coverage Robot

Kreinar, Edward J. 23 August 2013 (has links)
No description available.
179

Bearing-Only Cooperative-Localization and Path-Planning of Ground and Aerial Robots

Sharma, Rajnikant 16 November 2011 (has links) (PDF)
In this dissertation, we focus on two fundamental problems related to the navigation of ground robots and small Unmanned Aerial Vehicle (UAVs): cooperative localization and path planning. The theme running through in all of the work is the use of bearing only sensors, with a focus on monocular video cameras mounted on ground robots and UAVs. To begin with, we derive the conditions for the complete observability of the bearing-only cooperative localization problem. The key element of this analysis is the Relative Position Measurement Graph (RPMG). The nodes of an RPMG represent vehicle states and the edges represent bearing measurements between nodes. We show that graph theoretic properties like the connectivity and the existence of a path between two nodes can be used to explain the observability of the system. We obtain the maximum rank of the observability matrix without global information and derive conditions under which the maximum rank can be achieved. Furthermore, we show that for the complete observability, all of the nodes in the graph must have a path to at least two different landmarks of known location. The complete observability can also be obtained without landmarks if the RPMG is connected and at least one of the robots has a sensor which can measure its global pose, for example a GPS receiver. We validate these conditions by simulation and experimental results. The theoretical conditions to attain complete observability in a localization system is an important step towards reliable and efficient design of localization and path planning algorithms. With such conditions, a designer does not need to resort to exhaustive simulations and/or experimentation to verify whether a given selection of a control strategy, topology of the sensor network, and sensor measurements meets the observability requirements of the system. In turn, this leads to decreased requirements of time, cost, and effort for designing a localization algorithms. We use these observability conditions to develop a technique, for camera equipped UAVs, to cooperatively geo-localize a ground target in an urban terrain. We show that the bearing-only cooperative geo-localization technique overcomes the limitation of requiring a low-flying UAV to maintain line-of-sight while flying high enough to maintain GPS lock. We design a distributed path planning algorithm using receding horizon control that improves the localization accuracy of the target and of all of the UAVs while satisfying the observability conditions. Next, we use the observability analysis to explicitly design an active local path planning algorithm for UAVs. The algorithm minimizes the uncertainties in the time-to-collision (TTC) and bearing estimates while simultaneously avoiding obstacles. Using observability analysis we show that maximizing the observability and collision avoidance are complementary tasks. We provide sufficient conditions of the environment which maximizes the chances obstacle avoidance and UAV reaching the goal. Finally, we develop a reactive path planner for UAVs using sliding mode control such that it does not require range from the obstacle, and uses bearing to obstacle to avoid cylindrical obstacles and follow straight and curved walls. The reactive guidance strategy is fast, computationally inexpensive, and guarantees collision avoidance.
180

GPS-oscillation-robust Localization and Visionaided Odometry Estimation / GPS-oscillation-robust lokalisering och visionsstödd odometri uppskattning

CHEN, HONGYI January 2019 (has links)
GPS/IMU integrated systems are commonly used for vehicle navigation. The algorithm for this coupled system is normally based on Kalman filter. However, oscillated GPS measurements in the urban environment can lead to localization divergence easily. Moreover, heading estimation may be sensitive to magnetic interference if it relies on IMU with integrated magnetometer. This report tries to solve the localization problem on GPS oscillation and outage, based on adaptive extended Kalman filter(AEKF). In terms of the heading estimation, stereo visual odometry(VO) is fused to overcome the effect by magnetic disturbance. Vision-aided AEKF based algorithm is tested in the cases of both good GPS condition and GPS oscillation with magnetic interference. Under the situations considered, the algorithm is verified to outperform conventional extended Kalman filter(CEKF) and unscented Kalman filter(UKF) in position estimation by 53.74% and 40.09% respectively, and decrease the drifting of heading estimation. / GPS/IMU integrerade system används ofta för navigering av fordon. Algoritmen för detta kopplade system är normalt baserat på ett Kalmanfilter. Ett problem med systemet är att oscillerade GPS mätningar i stadsmiljöer enkelt kan leda till en lokaliseringsdivergens. Dessutom kan riktningsuppskattningen vara känslig för magnetiska störningar om den är beroende av en IMU med integrerad magnetometer. Rapporten försöker lösa lokaliseringsproblemet som skapas av GPS-oscillationer och avbrott med hjälp av ett adaptivt förlängt Kalmanfilter (AEKF). När det gäller riktningsuppskattningen används stereovisuell odometri (VO) för att försvaga effekten av magnetiska störningar genom sensorfusion. En Visionsstödd AEKF-baserad algoritm testas i fall med både goda GPS omständigheter och med oscillationer i GPS mätningar med magnetiska störningar. Under de fallen som är aktuella är algoritmen verifierad för att överträffa det konventionella utökade Kalmanfilteret (CEKF) och ”Unscented Kalman filter” (UKF) när det kommer till positionsuppskattning med 53,74% respektive 40,09% samt minska fel i riktningsuppskattningen.

Page generated in 0.0891 seconds