• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 27
  • 19
  • 13
  • 11
  • 9
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 263
  • 263
  • 175
  • 68
  • 61
  • 51
  • 40
  • 34
  • 31
  • 30
  • 28
  • 25
  • 25
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Doba nezaměstnanosti v České republice pohledem analýzy přežití / Unemployment Duration in the Czech Republic Through the Lens of Survival Analysis

Čabla, Adam January 2017 (has links)
In the presented thesis the aim is to apply methods of survival analysis to the data from the Labour Force Survey, which are interval-censored. With regard to this type of data, I use specific methods designed to handle them, especially Turnbull estimate, weighted log-rank test and the AFT model. Other objective of the work is the design and application of a methodology for creating a model of unemployment duration, depending on the available factors and its interpretation. Other aim is to evaluate evolution of the probability distribution of unemployment duration and last but not least aim is to create more accurate estimate of the tail using extreme value theory. The main benefits of the thesis can include the creation of a methodology for examining the data from the Labour Force Survey based on standard techniques of survival analysis. Since the data are internationally comparable, the methodology is applicable at the level of European Union countries and several others. Another benefit of this work is estimation of the parameters of the generalized Pareto distribution on interval-censored data and creation and comparison of the models of piecewise connected distribution functions with solution of the connection problem. Work brought empirical results, most important of which is the comparison of results from three different data approaches and specific relationship between selected factors and time to find a job or spell of unemployment.
192

Approche algébrique et théorie des valeurs extrêmes pour la détection de ruptures : Application aux signaux biomédicaux / Algebraic approach and extreme value theory for change-point detection : Application to the biomedical signals

Debbabi, Nehla 14 December 2015 (has links)
Ce travail développe des techniques non-supervisées de détection et de localisation en ligne de ruptures dans les signaux enregistrés dans un environnement bruité. Ces techniques reposent sur l'association d'une approche algébrique avec la TVE. L'approche algébrique permet d'appréhender aisément les ruptures en les caractérisant en termes de distributions de Dirac retardées et leurs dérivées dont la manipulation est facile via le calcul opérationnel. Cette caractérisation algébrique, permettant d'exprimer explicitement les instants d'occurrences des ruptures, est complétée par une interprétation probabiliste en termes d'extrêmes : une rupture est un évènement rare dont l'amplitude associée est relativement grande. Ces évènements sont modélisés dans le cadre de la TVE, par une distribution de Pareto Généralisée. Plusieurs modèles hybrides sont proposés dans ce travail pour décrire à la fois le comportement moyen (bruit) et les comportements extrêmes (les ruptures) du signal après un traitement algébrique. Des algorithmes entièrement non-supervisés sont développés pour l'évaluation de ces modèles hybrides, contrairement aux techniques classiques utilisées pour les problèmes d'estimation en question qui sont heuristiques et manuelles. Les algorithmes de détection de ruptures développés dans cette thèse ont été validés sur des données générées, puis appliqués sur des données réelles provenant de différents phénomènes, où les informations à extraire sont traduites par l'apparition de ruptures. / This work develops non supervised techniques for on-line detection and location of change-points in noisy recorded signals. These techniques are based on the combination of an algebraic approach with the Extreme Value Theory (EVT). The algebraic approach offers an easy identification of the change-points. It characterizes them in terms of delayed Dirac distributions and their derivatives which are easily handled via operational calculus. This algebraic characterization, giving rise to an explicit expression of the change-points locations, is completed with a probabilistic interpretation in terms of extremes: a change point is seen as a rare and extreme event. Based on EVT, these events are modeled by a Generalized Pareto Distribution.Several hybrid multi-components models are proposed in this work, modeling at the same time the mean behavior (noise) and the extremes ones (change-points) of the signal after an algebraic processing. Non supervised algorithms are proposed to evaluate these hybrid models, avoiding the problems encountered with classical estimation methods which are graphical ad hoc ones. The change-points detection algorithms developed in this thesis are validated on generated data and then applied on real data, stemming from different phenomenons, where change-points represent the information to be extracted.
193

Investigating Systematics In The Cosmological Data And Possible Departures From Cosmological Principle

Gupta, Shashikant 08 1900 (has links) (PDF)
This thesis contributes to the field of dark energy and observational cosmology. We have investigated possible direction dependent systematic signal and non-Gaussian features in the supernovae (SNe) Type Ia data. To detect these effects we propose a new method of analysis. Although We have used this technique on SNe Ia data, it is quite general and can be applied to other data sets as well. SNe Ia are the most precise known distance indicators at the cosmological distances. Their constant peak luminosity(after correction) makesthem standard candles and hence one can measure the distances in the universe using SNe Ia. This distance measurement can determine various cosmological parameters such as the Hubble constant, various components of matter density and dark energy from, the SNe Ia observations. Recent SNe Ia observations have shown that the expansion of the universe is currently accelerating. This recent acceleration is explained by invoking a component in the universe having negative pressure and is termed as dark energy. It can be described by a homogeneous and isotropic fluid with the equation of state P = wρ, where w is allowed to be negative. A constant(Λ) in the Einstein equation(known as cosmological constant) can explain the acceleration, in the fluid model it can be modeled with w = -1. Other models of dark energy with w = -1 can also explain the acceleration, however the precise nature of this mysterious component remains unknown. Although there exist a wide range of dark energy models, cosmological constant provides the simplest explanation to the acceleration of the expansion of the Universe. The equation of state parameter w has been investigated by recent surveys but the results are still consistent with a wide range of dark energy models. In order to discriminate among various cosmological models we need an even more precise measurement of distance and error bars in the SNe Ia data. From the central limit theorem we expect Gaussian errors in any experiment that is free from systematic noise. However in astronomy we do not have a control over the observed phenomena and thus can not control the systematic errors (due to some physical processes in the Universe) in the observed data. The only possible way to deal with such data is by using appropriate statistical techniques. Among these systematic features the direction dependent features are more dangerous ones since they may indicate a preferred direction in the Universe. To address the issue of direction dependent features we have developed a new technique(Δ statistic henceforth) which is based on the extreme value theory. We have applied this technique to the available high-z SNe Ia data from Riess et al.(2004)and Riess et al.(2007). In addition we have applied it to the HST data from HST key project for H0 measurement. Below we summarize the material presented in the thesis. Chapter wise summary of the thesis In the first chapter we present an introductory discussion of the various basic cosmological notions eg. Cosmological Principle (CP), observational evidence in support of CP and departures from it, distance measures and large scale structure. The observed departures from the CP could be present due to the systematic errors and/or non-Gaussian error bars in the data. We discuss the errors involved in the measurement process Basics of statistical techniques : In the next two chapters we discuss basics of the statistical techniques used in this thesis and extreme value theory. Extreme value theory describes how to calculate the distribution of extreme events. The simplest of the distributions of the extremes is known as the Gumbel distribution. We discuss features of the Gumbel distribution since it is used extensively in our analysis. Δ statistic and features in the SNe data : In the fourth chapter we derive Δ statistic and apply it to the SNe Ia data sets. An outline of the Δ statistic is as follows : a) We define a plane which cuts the sky into hemispheres. This plane will divide the data into two subsets, one in each hemisphere. b) Now we calculate the χ2 in each hemisphere for an FRW universe assuming a flat geometry. c) The difference of χ2 in the two hemisphere is calculated and maximized by rotating the plane. This maximum should follow the Gumbel distribution. Since it is difficult to calculate the analytic form of Gumbel distribution we calculate it numerically assuming Gaussian error bars. This gives the theoretical distribution for the above calculated maximum of difference of χ2 . The results indicate that GD04 shows systematic effects as well non-Gaussian features while the set GD07 is better in terms of systematic effects and non-Gaussian features. Non-Gaussian features in the H0 data : HST key project measures the value of Hubble constant at the level of 10% accuracy, which requires precise measurement of the distances. It uses various methods to measure distance for instance SNe Ia, Tully-Fisher relation, surface-brightness fluctuations etc. In the fifth chapter we apply Δ statistic to the HST Key Project data in order to check the presence of non-Gaussian and direction dependent features. Our results show that although this data set seems to be free of direction dependent features, it is inconsistent with the Gaussian errors. Analytic Marginalization : The quantities of real interest in cosmology are ΩM and ΩΛ, Hubble constant could in principle be treated as a nuisance parameter. It would be useful to marginalize over the nuisance parameter. Although it can be done numerically using Bayesian method, Δ statistic does not allow it. In chapter six we propose a method to marginalize over H0 analytically. The χ2 in this case is a complicated function of errors in the data. We compare this analytic method with the Bayesian marginalization method and results show that the two methods are quite consistent. We apply the Δ statistic to the SNe data after the analytic marginalization. Results do not change much indicating the insensitivity of the direction de-pendent features to the Hubble constant. A variation to the Δ statistic: As has been discussed earlier that, it is difficult to calculate the theoretical distribution of Δ in general. However if the parent distribution follows certain conditions it is possible to derive the analytic form for the Gumbel distribution for Δ. In the seventh chapter we derive a variation to the Δ statistic in a way that allows us to calculate the analytic distribution. The results in this case are different from those presented earlier, but they confirm the same direction dependence and non-Gaussian features in the data.
194

Evaluation et optimisation des performances de fonctions pour la surveillance de turboréacteurs / Evaluation and optimization of function performances for the monitoring of turbojet engines

Hmad, Ouadie 06 December 2013 (has links)
Cette thèse concerne les systèmes de surveillance des turboréacteurs. Le développement de tels systèmes nécessite une phase d’évaluation et d’optimisation des performances, préalablement à la mise en exploitation. Le travail a porté sur cette phase, et plus précisément sur les performances des fonctions de détection et de pronostic de deux systèmes. Des indicateurs de performances associés à chacune de ces fonctions ainsi que leur estimation ont été définis. Les systèmes surveillés sont d’une part la séquence de démarrage pour la fonction de détection et d’autre part la consommation d’huile pour la fonction de pronostic. Les données utilisées venant de vols en exploitation sans dégradations, des simulations ont été nécessaires pour l’évaluation des performances. L’optimisation des performances de détection a été obtenue par réglage du seuil sur la statistique de décision en tenant compte des exigences des compagnies aériennes exprimées en termes de taux de bonne détection et de taux d’alarme fausse. Deux approches ont été considérées et leurs performances ont été comparées pour leurs meilleures configurations. Les performances de pronostic de surconsommations d’huile, simulées à l’aide de processus Gamma, ont été évaluées en fonction de la pertinence de la décision de maintenance induite par le pronostic. Cette thèse a permis de quantifier et d’améliorer les performances des fonctions considérées pour répondre aux exigences. D’autres améliorations possibles sont proposées comme perspectives pour conclure ce mémoire / This thesis deals with monitoring systems of turbojet engines. The development of such systems requires a performance evaluation and optimization phase prior to their introduction in operation. The work has been focused on this phase, and more specifically on the performance of the detection and the prognostic functions of two systems. Performances metrics related to each of these functions as well as their estimate have been defined. The monitored systems are, on the one hand, the start sequence for the detection function and on the other hand, the oil consumption for the prognostic function. The used data come from flights in operation without degradation, simulations of degradation were necessary for the performance assessment. Optimization of detection performance was obtained by tuning a threshold on the decision statistics taking into account the airlines requirements in terms of good detection rate and false alarm rate. Two approaches have been considered and their performances have been compared for their best configurations. Prognostic performances of over oil consumption, simulated using Gamma processes, have been assessed on the basis of the relevance of maintenance decision induced by the prognostic. This thesis has allowed quantifying and improving the performance of the two considered functions to meet the airlines requirements. Other possible improvements are proposed as prospects to conclude this thesis
195

Exchange market pressure: an evaluation using extreme value theory / Napětí na devizovém trhu: měření pomocí teorie extrémních hodnot

Zuzáková, Barbora January 2013 (has links)
This thesis discusses the phenomenon of currency crises, in particular it is devoted to empirical identification of crisis periods. As a crisis indicator, we aim to utilize an exchange market pressure index which has been revealed as a very powerful tool for the exchange market pressure quantification. Since enumeration of the exchange market pressure index is crucial for further analysis, we pay special attention to different approaches of its construction. In the majority of existing literature on exchange market pressure models, a currency crisis is defined as a period of time when the exchange market pressure index exceeds a predetermined level. In contrast to this, we incorporate a probabilistic approach using the extreme value theory. Our goal is to prove that stochastic methods are more accurate, in other words they are more reliable instruments for crisis identification. We illustrate the application of the proposed method on a selected sample of four central European countries over the period 1993 - 2012, or 1993 - 2008 respectively, namely the Czech Republic, Hungary, Poland and Slovakia. The choice of the sample is motivated by the fact that these countries underwent transition reforms to market economies at the beginning of 1990s and therefore could have been exposed to speculative attacks on their newly arisen currencies. These countries are often assumed to be relatively homogeneous group of countries at similar stage of the integration process. Thus, a resembling development of exchange market pressure, particularly during the last third of the estimation period, would not be surprising.
196

Non-Life Excess of Loss Reinsurance Pricing / Oceňování zajištění škodního nadměrku v neživotním pojištění

Hrevuš, Jan January 2010 (has links)
Probably the most frequently used definition of reinsurance is insurance for insurance companies, by reinsurance the cedant (insurance company) cedes part of the risk to the reinsurer. Reinsurance plays nowadays a crucial role in insurance industry as it does not only reduce the reinsured's exposure, but it can also significantly reduce the required solvency capital. In past few decades various approaches to reinsurance actuarial modelling were published and many actuaries are nowadays just reinsurance specialized. The thesis provides an overview of the actuarial aspects of modelling a non-life per risk and for motor third party liability per event excess of loss reinsurance structure, according to the author's knowledge no study of such wide scope exists and various aspects have to be found in various fragmented articles published worldwide. The thesis is based on recent industry literature describing latest trends and methodologies used, the theory is compared with the praxis as the author has working experience from underwriting at CEE reinsurer and actuarial reinsurance modelling at global reinsurance broker. The sequence of topics which are dealt corresponds to sequence of the steps taken by actuary modelling reinsurance and each step is discussed in detail. Starting with data preparation and besides loss inflation, more individual claims development methods are introduced and own probabilistic model is constructed. Further, burning cost analysis and probabilistic rating focused on heavy tailed distributions are discussed. A special attention is given to exposure rating which is not commonly known discipline among actuaries outside of reinsurance industry and different methodologies for property and casualty exposure modelling are introduced including many best practice suggestions. All main approaches to the reinsurance modelling are also illustrated on either real or realistically looking data, similar to those provided by European insurance companies to their reinsurers during renewal periods.
197

Modélisation de la structure de dépendance d'extrêmes multivariés et spatiaux / Modelling the dependence structure of multivariate and spatial extremes

Béranger, Boris 18 January 2016 (has links)
La prédiction de futurs évènements extrêmes est d’un grand intérêt dans de nombreux domaines tels que l’environnement ou la gestion des risques. Alors que la théorie des valeurs extrêmes univariées est bien connue, la complexité s’accroît lorsque l’on s’intéresse au comportement joint d’extrêmes de plusieurs variables. Un intérêt particulier est porté aux évènements de nature spatiale, définissant le cadre d’un nombre infini de dimensions. Sous l’hypothèse que ces évènements soient marginalement extrêmes, nous focalisons sur la structure de dépendance qui les lie. Dans un premier temps, nous faisons une revue des modèles paramétriques de dépendance dans le cadre multivarié et présentons différentes méthodes d’estimation. Les processus maxstables permettent l’extension au contexte spatial. Nous dérivons la loi en dimension finie du célèbre modèle de Brown- Resnick, permettant de faire de l’inférence par des méthodes de vraisemblance ou de vraisemblance composée. Nous utilisons ensuite des lois asymétriques afin de définir la représentation spectrale d’un modèle plus large : le modèle Extremal Skew-t, généralisant la plupart des modèles présents dans la littérature. Ce modèle a l’agréable propriété d’être asymétrique et non-stationnaire, deux notions présentées par les évènements environnementaux spatiaux. Ce dernier permet un large spectre de structures de dépendance. Les indicateurs de dépendance sont obtenus en utilisant la loi en dimension finie.Enfin, nous présentons une méthode d’estimation non-paramétrique par noyau pour les queues de distributions et l’appliquons à la sélection de modèles. Nous illustrons notre méthode à partir de l’exemple de modèles climatiques. / Projection of future extreme events is a major issue in a large number of areas including the environment and risk management. Although univariate extreme value theory is well understood, there is an increase in complexity when trying to understand the joint extreme behavior between two or more variables. Particular interest is given to events that are spatial by nature and which define the context of infinite dimensions. Under the assumption that events correspond marginally to univariate extremes, the main focus is then on the dependence structure that links them. First, we provide a review of parametric dependence models in the multivariate framework and illustrate different estimation strategies. The spatial extension of multivariate extremes is introduced through max-stable processes. We derive the finite-dimensional distribution of the widely used Brown-Resnick model which permits inference via full and composite likelihood methods. We then use Skew-symmetric distributions to develop a spectral representation of a wider max-stable model: the extremal Skew-t model from which most models available in the literature can be recovered. This model has the nice advantages of exhibiting skewness and nonstationarity, two properties often held by environmental spatial events. The latter enables a larger spectrum of dependence structures. Indicators of extremal dependence can be calculated using its finite-dimensional distribution. Finally, we introduce a kernel based non-parametric estimation procedure for univariate and multivariate tail density and apply it for model selection. Our method is illustrated by the example of selection of physical climate models.
198

Modèle de mélange et modèles linéaires généralisés, application aux données de co-infection (arbovirus & paludisme) / Mixture model and generalized linear models, application to co-infection data (arbovirus & malaria)

Loum, Mor Absa 28 August 2018 (has links)
Nous nous intéressons, dans cette thèse, à l'étude des modèles de mélange et des modèles linéaires généralisés, avec une application aux données de co-infection entre les arbovirus et les parasites du paludisme. Après une première partie consacrée à l'étude de la co-infection par un modèle logistique multinomial, nous proposons dans une deuxième partie l'étude des mélanges de modèles linéaires généralisés. La méthode proposée pour estimer les paramètres du mélange est une combinaison d'une méthode des moments et d'une méthode spectrale. Nous proposons à la fin une dernière partie consacrée aux mélanges de valeurs extrêmes en présence de censure. La méthode d'estimation proposée dans cette partie se fait en deux étapes basées sur la maximisation d'une vraisemblance. / We are interested, in this thesis, to the study of mixture models and generalized linear models, with an application to co-infection data between arboviruses and malaria parasites. After a first part dedicated to the study of co-infection using a multinomial logistic model, we propose in a second part to study the mixtures of generalized linear models. The proposed method to estimate the parameters of the mixture is a combination of a moment method and a spectral method. Finally, we propose a final section for studing extreme value mixtures under random censoring. The estimation method proposed in this section is done in two steps based on the maximization of a likelihood.
199

Physique statistique des systèmes désordonnées en basses dimensions / Statistical physics of disordered systems in low dimensions

Cao, Xiangyu 24 March 2017 (has links)
Cette thèse présente des résultats nouveaux dans deux sujets de la physique statistique du désordre: les modèles aux energies aléatoires logarithmiquement corrélées (logREMs), et la transition de localisation dans les matrices aléatoires à longues portées.Dans la première partie consacrée aux logREMs, nous montrons comment décrire leurs points communs et les données spécifiques aux modèles particuliers. Ensuite nous appliquons la méthode de la brisure de symétrie des répliques pour les étudier en general, et en déduirons la transition vitreuse et le processus des minima, en termes de processus de Poisson décorés. Nous présentons également une série d'application des polynômes de Jack à la prédiction exactes des observables dans le modèle circulaire et ses variants. Finalement, nous décrivons les progrès récents sur la connexion exacte entre les logREMs et la théorie conforme de Liouville.La seconde partie a pour but d'introduire une nouvelle classe de matrices aléatoires à bandes, dite la classe des distributions larges; elle ressemble essentiellement aux matrices creuses. Nous étudions d'abord un modèle particulier de la classe, les matrices aléatoires Bêta, qui sont inspirées par une correspondence exacte à un modèle statistique récemment étudié, celui de la dynamique épidémique. A l'aide des arguments analytiques appuyés sur la correspondence et des simulations numériques, nous montrons l'existence des transitions de localisation avec des valeurs propres critiques dans le régime des paramètres dit d'exponentielle étirée. Ensuite, en utilisant une approche de renormalisation et de diagonalisation par blocs, nous soutenons que les transitions de localisation sont en général présentes dans la class des distributions larges. / This thesis presents original results in two domains of disordered statistical physics: logarithmic correlated Random Energy Models (logREMs), and localization transition in long-range random matrices.In the first part devoted to logREMs, we show how to characterise their common properties and model--specific data. Then we develop their replica symmetry breaking treatment, which leads to the freezing scenario of their free energy distribution and the general description of their minima process, in terms of decorated Poisson point process. We also report a series of new applications of the Jack polynomials in the exact predictions of some observables in the circular model and its variants. Finally, we present the recent progress on the exact connection between logREMs and the Liouville conformal field theory.The goal of the second part is to introduce and study a new class of banded random matrices, the broadly distributed class, which is characterid an effective sparseness. We will first study a specific model of the class, the Beta Banded random matrices, inspired by an exact mapping to a recently studied statistical model of long--range first--passage percolation/epidemics dynamics. Using analytical arguments based on the mapping and numerics, we show the existence of localisation transitions with mobility edges in the ``stretch--exponential'' parameter--regime of the statistical models. Then, using a block--diagonalization renormalization approach, we argue that such localization transitions occur generically in the broadly distributed class.
200

Variability and long-term trends of climate extremes over the Limpopo, South Africa

Sikhwari, Thendo 20 September 2019 (has links)
MENVSC / Department of Geography and Geo-Information Sciences / Climate change has a crucial impact on livelihoods, economy, and water resources due to the occurrence of weather and climate extreme events such as floods, droughts and heat waves. Extreme weather has been increasing worldwide, hence the need to understand their nature and trends. The aim of this study was to analyse the spatial variability and long-term trends of climate extremes over the Limpopo in South Africa from 1960 to 2014. Rainfall, temperature, and circulation fields were analysed to understand the extent, nature of climate extremes over the Limpopo. Extreme value theory (EVT) is a powerful method that was also employed in this study to provide statistical models for events rarely observed. R statistical software was used for clustering analysis which has a variety of functions for cluster analysis. Any station whose value is larger than 95th for any day of the season was considered as a widespread extreme event. The results show that the study area is highly vulnerable to extreme events due to its latitudinal location and low altitude. Anomalous cut-off lows, tropical cyclones and tropical storms are the major extreme producing systems affecting the Limpopo province whilst the Botswana High becomes dominant during heat waves and drought. Extreme weather events are common in Limpopo during summertime and often coincide with mature phases of the El Nino Southern Oscillation. In this study, after the suitable model for data was chosen, the interest was in deriving return levels of extreme maximum rainfall. The computed data for return levels predicted that the 5-year return period’s return level is approximately 223.89 mm, which suggests that rainfall of 223.89 mm or more per month should occur at that station or location on the average of once every five years. / NRF / http://hdl.handle.net/11602/1485

Page generated in 0.0634 seconds