• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 47
  • 45
  • 16
  • 16
  • 14
  • 9
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 482
  • 73
  • 70
  • 53
  • 52
  • 35
  • 33
  • 32
  • 28
  • 28
  • 28
  • 28
  • 28
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

MedFabric4Me: Blockchain Based Patient Centric Electronic Health Records System

January 2020 (has links)
abstract: Blockchain technology enables a distributed and decentralized environment without any central authority. Healthcare is one industry in which blockchain is expected to have significant impacts. In recent years, the Healthcare Information Exchange(HIE) has been shown to benefit the healthcare industry remarkably. It has been shown that blockchain could help to improve multiple aspects of the HIE system. When Blockchain technology meets HIE, there are only a few proposed systems and they all suffer from the following two problems. First, the existing systems are not patient-centric in terms of data governance. Patients do not own their data and have no direct control over it. Second, there is no defined protocol among different systems on how to share sensitive data. To address the issues mentioned above, this paper proposes MedFabric4Me, a blockchain-based platform for HIE. MedFabric4Me is a patient-centric system where patients own their healthcare data and share on a need-to-know basis. First, analyzed the requirements for a patient-centric system which ensures tamper-proof sharing of data among participants. Based on the analysis, a Merkle root based mechanism is created to ensure that data has not tampered. Second, a distributed Proxy re-encryption system is used for secure encryption of data during storage and sharing of records. Third, combining off-chain storage and on-chain access management for both authenticability and privacy. MedFabric4Me is a two-pronged solution platform, composed of on-chain and off-chain components. The on-chain solution is implemented on the secure network of Hyperledger Fabric(HLF) while the off-chain solution uses Interplanetary File System(IPFS) to store data securely. Ethereum based Nucypher, a proxy re-encryption network provides cryptographic access controls to actors for encrypted data sharing. To demonstrate the practicality and scalability, a prototype solution of MedFabric4Me is implemented and evaluated the performance measure of the system against an already implemented HIE. Results show that decentralization technology like blockchain could help to mitigate some issues that HIE faces today, like transparency for patients, slow emergency response, and better access control. Finally, this research concluded with the benefits and shortcomings of MedFabric4Me with some directions and work that could benefit MedFabric4Me in terms of operation and performance. / Dissertation/Thesis / Masters Thesis Computer Engineering 2020
212

Folding mechanism in furniture design

Kim, Joan 01 May 2018 (has links)
I have an interest in creating furniture with a mechanism that makes the furniture move functionally. Therefore, this paper explains the process and outcomes of designing a chair and a set of furniture with a coatrack, an accent table, and a stackable stool. All the furniture packs flat for storage and shipping purpose with a folding mechanism. The folds happen with fabric hinges that have been experimented with different materials, machinery, and fundamentals.
213

Managing Access during Employee Separation using Blockchain Technology

Mears, Paula Faye 05 1900 (has links)
On-boarding refers to bringing in an employee to a company and granting access to new hires. However, a person may go through different stages of employment, hold different jobs by the same employer and have different levels of information access during the employment duration. A shared services organization may have either limited or wide-spread access within certain groups. Off-boarding implies the removal of access of information or physical devices such as keys, computers or mobile devices when the employee leaves. Off-boarding is the management of the separation an employee from an institution. Many organizations use different steps that constitute the off-boarding process. Incomplete tracking of an employee's access is a security risk and can lead to unintended exposure of company information and assets. Blockchain technology combines blocks of information together using a cryptographic algorithm based on the existing previous block and is verified by the peers in the blockchain network. This process creates an immutable record of employee system access providing an audit trail of access for any point in time to ensure that all access permissions can be removed once employment ends. This project proposes using blockchain technology to consolidate information across disparate groups, and to automate access removal to improve the employee off-boarding process.
214

Quantifying strain in analogue models simulating fold-and-thrust belts using magnetic fabric analysis

Schöfisch, Thorben January 2021 (has links)
Applying the anisotropy of magnetic susceptibility to analogue models provides detailed insights into the strain distribution and quantification of deformation within contractional tectonic settings like fold-and-thrust belts (FTBs). Shortening in FTBs is accommodated by layer-parallel shortening, folding, and thrusting. The models in this research reflect the different deformation processes and the resulting magnetic fabric can be attributed to thrusting, folding and layer-parallel shortening. Thrusting develops a magnetic foliation parallel to the thrust surface, whereas folding and penetrative strain develop a magnetic lineation perpendicular to the shorting direction but parallel to the bedding. These fabric types can be observed in the first model of this study, which simulated a FTB shortened above two adjacent décollements with different frictional properties. The different friction coefficients along the décollements have not only an effect on the geometric and kinematic evolution of a FTB, but also on the strain distribution and magnitude of strain within the belt.  The second series of models performed in this study show the development of a thrust imbricate and the strain distribution across a single imbricate in more detail. Three models, with similar setup but different magnitudes of bulk shortening, show strain gradients by gradual changes in principal axes orientations and decrease in degree of anisotropy with decreasing distance to thrusts and kinkzones. These models show that at the beginning of shortening, strain is accommodated mainly by penetrative strain. With further shortening, formation of thrusts and kinkzones overprint the magnetic fabric locally and the degree of anisotropy is decreasing within the deformation zones. At thrusts, an overprint of the magnetic fabric prior deformation towards a magnetic foliation parallel to the thrust surfaces can be observed. A rather complex interplay between thrusting and folding can be analysed in the kinkzones. In general, this thesis outlines the characteristics of magnetic fabric observed in FTBs, relates different types of magnetic fabric to different processes of deformation and provides insights into the strain distribution of FTBs.
215

Thermal Structure of Mid-Crustal Shear Zones

Mazza, Sarah Elizabeth 28 June 2013 (has links)
Analysis of quartz c-axis fabrics and microstructures from ductily deformed rocks allows for the examination of the kinematics associated with crustal deformation. This thesis expands on the current knowledge of the kinematic evolution of the Himalayas and Scottish Caledonides, by examining samples from the Main Central Thrust (MCT) (Himalayas) and the Sgurr Beag Thrust (SBT) (Scottish Caledonides).  Metamorphic temperatures (Tm) associated above the MCT are inverted; chapter one attempts to test if deformation temperatures (Td) correlate to Tm, indicating that ductile shearing occurred during peak Tm. In the Scottish Caledonides, Td and Tm increase from foreland to hinterland, potentially indicating a right way up thermal structure;  chapter two presents Td and Tm associated with the region around the SBT. Above the MCT, quartz c-axis fabrics yield Td ranging between 500-650 "C, corresponding to the temperatures of dynamic recrystallization for subgrain rotation (SGR) and grain boundary migration (GBM). Up to 1000m above the MCT, Td and Tm are within error of each other, suggesting that shearing occurred during peak Tm; while further away from the MCT  Tm is significantly hotter than Td, suggesting that shearing continued past Tm. Deformation associated with the upper part of the Moine thrust sheet and the SBT yields quartz c-axis fabrics with Td ranging between 395-583 "C, corresponding to the regional dynamic recrystallization. Tm calculations original to this study yield pressure-temperature constraints of 4.8-5.8 kbar and 586-625 "C. Tm is within error of Td, suggesting that deformation and metamorphism were synchronous. / Master of Science
216

odprášení chladícího pásu na aglomeraci(výkon pasu 130t/h) / Dedusting of cooling conveyor for agglomaration( Conveyor output 130t/h)

Hanzlík, Václav January 2013 (has links)
The main aim of this thesis is to propose a suitable dusting cooling conveyor technology for agglomeration South in Ostrava. The first part deals with the actual sinter production and its influence on air. It further describes the most commonly used separation device in agglomerations. In the second part of this thesis there is designed a scheme of piping line for suction air and there is also described the choice of abatement equipment and associated equipment. The work includes also drawing plans of the proposed solution.
217

Enabling Peer to Peer Energy Trading Marketplace Using Consortium Blockchain Networks

January 2019 (has links)
abstract: Blockchain technology enables peer-to-peer transactions through the elimination of the need for a centralized entity governing consensus. Rather than having a centralized database, the data is distributed across multiple computers which enables crash fault tolerance as well as makes the system difficult to tamper with due to a distributed consensus algorithm. In this research, the potential of blockchain technology to manage energy transactions is examined. The energy production landscape is being reshaped by distributed energy resources (DERs): photo-voltaic panels, electric vehicles, smart appliances, and battery storage. Distributed energy sources such as microgrids, household solar installations, community solar installations, and plug-in hybrid vehicles enable energy consumers to act as providers of energy themselves, hence acting as 'prosumers' of energy. Blockchain Technology facilitates managing the transactions between involved prosumers using 'Smart Contracts' by tokenizing energy into assets. Better utilization of grid assets lowers costs and also presents the opportunity to buy energy at a reasonable price while staying connected with the utility company. This technology acts as a backbone for 2 models applicable to transactional energy marketplace viz. 'Real-Time Energy Marketplace' and 'Energy Futures'. In the first model, the prosumers are given a choice to bid for a price for energy within a stipulated period of time, while the Utility Company acts as an operating entity. In the second model, the marketplace is more liberal, where the utility company is not involved as an operator. The Utility company facilitates infrastructure and manages accounts for all users, but does not endorse or govern transactions related to energy bidding. These smart contracts are not time bounded and can be suspended by the utility during periods of network instability. / Dissertation/Thesis / Masters Thesis Computer Science 2019
218

Influence of soft materials on student engagement with STEM : Combination of technology, programming, and textiles in a maker movement activity

Hamidi, Ali January 2018 (has links)
While the computer programing becomes a fundamental skill in the last century, it has been globally acknowledged that there is a decline in number of graduates in disciplines of Science, Technology, Engineering and Mathematics (STEM). Many scholars have been addressing this lack of interest and studied student engagement with STEM through variety of engagement programs and activities. In this master thesis as an exploratory qualitative study, technology and programing are blended together in a workshop hosting students of age 12-13 towards the development of their enthusiasm and engagement with STEM. During the activity, students used Makey Makey toolkit and Scartch programming language by application of textiles as soft material to investigate how this combination impact the engagement, and in what ways soft materials influence it. The study results in the light of Flow theory showed that four attributes of attention, motivation, engagement and social interaction pursued in the workshop. Textiles, as a mediator by expanding the flow state boundaries make the activity softer to encourage students being engaged in it, particularly from a gender perspective.
219

Modelling of the pressure distributions in twin-wire blade formers

Holmqvist, Claes January 2002 (has links)
During papermaking, the internal structure of the fibrenetwork constituting the paper is to a dominating extentdetermined in the forming zone of the paper machine. Thisthesis is aimed at studying the pressure distribution in bladeforming sections, which is commonly considered to be a keyquantity of the process. Previous work has provided insight into the physics ofdifferent devices employed in blade forming. However, there hasbeen a lack of models enabling studies of the effects of theinteraction between different components on the pressuredistribution. In the thesis, a model is presented for a genericblade forming section consisting of three blades. The positionsof two of the blades are fix, and in between them is located asuction box. The third blade is applied by a prescribed forceto the opposing wire, in a position facing the suction box. Themodel admits the study of the interaction between the pulsesfrom the different blades in the blade/counterbladeconfiguration, and between the pulses and one-sidedsuction. The wires are modelled as tensioned and perfectly flexibleEuler-Bernoulli beams of negligible mass. The suspension istreated like an inviscid fluid. Consideration is taken to theinfluence of fibre deposition on the permeability of thefabrics. By assuming the ratio between the length scales in thethickness direction and the machine direction to be small, aquasi one-dimensional model is obtained. For maximum flexibility, the model domain is divided intomodules. Each module is solved individually using a finitedifference based discretisation. The solutions for thedifferent modules are matched with each other iteratively. A comparison with published results for a single bladeindicates that the model can be used to obtain qualitativelycorrect predictions of the pressure distribution. New resultsinclude a series of calculations showing the non-trivialinteraction between the pressure pulses when the blades arepositioned successively closer together, the effects of suctionon the pressure pulse generated by a blade applied to theopposing wire, and how blades of modest curvature do notnecessarily stay in contact with the fabric along their fullwidth and the implication of this on the pressure gradient. <b>Descriptors:</b>fluid mechanics, blade forming, pressuredistribution, suction, interaction, permeable fabric,modules / NR 20140805
220

Deciphering the inherent

Hammarstrand, Alexander January 2015 (has links)
Deciphering the Inherent   Looks at how vernacular timber architecture can be looked at as not merely a traditional means of constructing spaces in timber.   But rather focusing on expanding the possibilities that it capacitates, exploring the material itself and timbering techniques as formwork for casting in concrete.   Material refinement, architectural heritage and environmental context has been investigated in relation to a contemporary intervention at the site of an 18th century sawmill in Sweden.   Parallel to the investigative process of construction techniques the project intends to create an altered building vocabulary that relates to the vernacular in an indirect and abstracted way.   A vocabulary that is an 21th century offspring of its vernacular ancestors. A vocabulary that welcomes the contemporary building to be deciphered by its visitors. Where traces from the construction process and material refinement are clues. Evoking questions of heritage, relation to the environment and context. In doing so enriching the spatial experience through interpretation. / Avkoda arvet Undersöker hur traditionell timringstekniken kan omformuleras från att enbart skapa rum av timmer, till att expandera potentialen i timringstekniken till att utforska ämnet som gjutformar för betong. Materialraffinering, arkitektonisk arv samt geografisk kontext har parallellt med de materilamässiga undersökandet utforskats vid platsen av ett före detta vattendrivet sågverk från 1800-talet. Projektet ämnar att parallellt med undersökandet av material och gjuttekniker utveckla ett alternerat byggnadsvokabulär som härstammar och relaterar till det historiska på ett abstrakt och indirekt maner. Ett vokabulär som är en 2000 talets ättling till sina historiska släktingar. Ett vokabulär som välkomnar den kontemporära byggnaden att bli avkodad och tolkad av sina besökare. Där spår av byggnadsprocessen och materialiteten är ledtrådar som väcker frågor kring historiskt arv, vikten av miljön för arkitektur samt kontext. Genom denna översättning och tolkning berikas och förhöjs den rumsliga upplevelsen.

Page generated in 0.0403 seconds