• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 226
  • 23
  • 22
  • 19
  • 18
  • 12
  • 6
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 478
  • 203
  • 181
  • 167
  • 163
  • 115
  • 78
  • 68
  • 45
  • 44
  • 41
  • 37
  • 35
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Creation of a Finite Element Model andSystem Analysis for the Low and HighFrequency Cryogenic Telescopes of theSpace Mission LiteBIRD

Rittatore Texeira, Matias January 2022 (has links)
The Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection (LiteBIRD) is a Japan Aerospace Exploration Agency (JAXA)-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the early Universe, through the measurement of their imprint onto the polarization of the Cosmic Microwave Background (CMB). It is an international collaboration, with European Union (EU) operations being coordinated by France. A short study on the merits of 2-dimensional versus 3-dimensional elements in the Finite Element Model (FEM) meshing of basic plates and beams was performed as well as the analysis of two different methods of representing threaded connections in FEM models. Both these activities were in service of the creation of a FEM model of the structure of the contribution of the EU to LiteBIRD: the Medium-High-Frequency Telescope (MHFT). All analysis was done using the Siemens NX software and the Simcenter Nastran solver. This model has passed preliminary quality checks and will be used for future structural analysis intended to verify the integrity of the design, its compliance with JAXA requirements, and to perform screw dimensioning. The results of those analyses will inform possible future design changes or will support the current design. Logistical work on the project was also performed, consisting of the groundwork to initiate an Assembly, Integration and Testing (AIT) plan and an Assembly, Integration and Verification (AIV) plan. This primarily involved the creation of a Model Definition Document, which contained clear and complete descriptions of the different MHFT models to be used throughout project development. The document defines the purpose and components of the models, the dependencies between models, as well as the necessary tests to be performed on each as part of the AIT and AIV process. A list of the structure interfaces was also created, which will contribute to the development of an interface control document.
112

Konnektortjocklekens inverkan på hållfastheten i en treleds-implantatbrounderkonstruktion av PEEK med hjälp av finita elementmetodenFinita elementmetoden för hållfasthetsanalys av treleds-implantatbrounderkonstruktioner av PEEK med varierande konnektordimensioneringKonnektordimensionens betydelse för hållfastheten i treleds-implantatbrounderkonstruktioner av PEEK; En finita elementanalys

Lundkvist, Helena, Roos, Gustav January 2016 (has links)
SammanfattningSyfteSyftet med föreliggande studie är varär att med en finita elementanalys (FEA) undersöka hållfastheten i implantatförankrade treleds-brounderkonstruktioner av materialet PEEK beroende på konnektordimension och belastningsvinkel med hjälp av finita elementmetoden (FEM) genom att analysera spänningskoncentration, displacering och töjning. i implantatförankrade treleds-brounderkonstruktioner i materialet PEEK beroende på konnektortjocklek och belastningsvinkel med hjälp av finita elementmetoden (FEM). Material och MetodTre Ddigitala implantatförankrade brokonstruktioner 44-46 i PEEK respektive zirkconia med konnektordimensionerna konnektorarean 12 mm2, 14 mm2 och 16 mm2 f framställdes i ett CAD-program. Grupperna med konnektordimensionen 16 mm2 utgjorde intern (P-16) respektive extern (Z-16) kontrollgrupp. Därefter Dessa belastades dessa med hjälp av med en programvara för FEM FEA på ponticen med kraften 500 N i vinklarna axiell (0°) och vinklad ( 30°) riktning. Värdena för spänningskoncentration, displacering och töjning visualiserades och analyserades.ResultatResultaten visade att högst spänningsvärden uppstod i PEEK-konstruktionen med konnektorarean 12 mm2 under en vinklad belastning, samt att lägst spänningsvärden uppstod i PEEK-konstruktionen med konnektorarean 14 mm2 under axiell belastning. Endast i kontrollgrupperna, PEEK respektive zirkonia 16 mm2P-16 respektive Z-16 uppstod den maximala spänningskoncentrationen ocklusalt istället för vid konnektorn, även om höga spänningsvärden fortfarande kunde utläsas cervikalt på konnektorn. Högre displacerings- och töjningsvärden kunde iakttas i samtliga PEEK-grupper jämfört med zirkonia-grupperna, oavsett konnektortjocklek konnektordimension och belastningsvinkel.SlutsatsInom ramen för följande föreliggande studiesrs begränsningar kan följande slutsatser dras:•En underdimensionerad konnektor har en negativ inverkan på hållfastheten i implantatförankrade treleds-brounderkonstruktioner av PEEK då de maximala spänningskoncentrationernas lokalisering förflyttas till mer kritiska områden i konnektorområdet. •En vinklad belastning ökar spänningarna, displaceringen och töjningen i implantatförankrade brounderkonstruktioner oavsett material eller konnektortjocklekkonnektordimension. •Spänningsvärden och spänningsfördelning är likartade i implantatförankrade treleds-underkonstruktioner av PEEK och zirkonia, men är mer kritiska för PEEK.•Displacerings- och töjningsvärden är högre i PEEK- än i zirkonia-implantatförankrade treleds-underkonstruktioner. / AbstractPurposeThe aim of the study was is to examine the strength ofin three-unit implant-supported frameworks made of PEEK, depending on connector dimension and loading direction utilizing via a finite element analysis-method (FEAM) by analyzing the stress concentration, displacement and strain. in three-unit implant-supported frameworks made of PEEK, depending on connector dimension and loading direction utilizing a finite element-method (FEM).Material and methodImplant-supported frameworks, 44-46, of PEEK and zirconia with connector dimensions area 12 mm2, 14 mm2 and 16 mm2 was produced by CAD. Via FEAM-software the pontic was loaded with 500 N angled at 0° and 30°. Values for stress, displacement and strain were analyzed.ResultsMaximum stress values ​​occurred in PEEK with the connector area 12 mm2 under angled loading and minimum stress​​ in PEEK with 14 mm2 under axial loading. In the control groups, P/Z 16 mm2, maximum stress arose occlusally, but high stress remained in the cervical connector area. Higher displacement and strain values for displacement and strain waswere observed in all PEEK-groups compared to zirconia, regardless of connector dimension and load angulation of the load.ConclusionWithin the limitations of this the study, the following conclusions were made:•An under-dimensioned connector have a negative impact on the strength of three-unit implant-supported frameworks made of PEEK since the location of the maximum stress appears in more critical areas – the connector areas.•Inclined loading increases stress, displacement and strain in three-unit implant-supported frameworks regardless of material or connector dimension.•Stress values and stress distribution are similar in three-unit implant-supported frameworks made from of PEEK as well as zirconia, but affects PEEK more critically.•Higher displacement and strain values were observed in three-unit implant-supported frameworks of PEEK compared to zirconia.
113

Investigation of the effect of tool geometry on the machining process

Deng, Baoqin January 2019 (has links)
Cutting tool geometries play important roles in tool performance, such as tool life, surface integrity, and cutting force. The most common commercial tools edge geometries are honed, chamfered and hone-chamfered. This study investigates new ways to develop tool geometry. An uncoated carbide tool is used in the orthogonal cutting of AISI 4140. By observing the tool geometry changes in the machining process with white light interferometry, a new tool wear geometry model has been proposed. A non-destructive tool wear measurement is discussed as well. In addition, this study presents the machining result comparison between the new and conventional geometries as well as the failure analysis from both experimental and FEA perspectives. / Thesis / Master of Applied Science (MASc)
114

Parametric Design and Optimization of an Upright of a Formula SAE car

Kaisare, Shubhankar Sudesh 06 June 2024 (has links)
The success of any racing car hinges on three key factors: its speed, handling, and reliability. In a highly competitive environment where lap times are extremely tight, even slight variations in components can significantly affect performance and, consequently, lap times. At the heart of a race car's performance lies the upright—a critical component of its suspension system. The upright serves to link the suspension arms to the wheels, effectively transmitting steering and braking forces to the suspension setup. Achieving optimal performance requires finding the right balance between lightweight design and ample stiffness, crucial for maintaining precise steering geometry and overall vehicle dynamics, especially under intense loads. Furthermore, there is a need to explore the system of structural optimization and seamlessly integrate Finite Element (FE) Models into the mathematical optimization process. This thesis explores a technique for parametric structural optimization utilizing finite element analysis and response surfaces to minimize the weight of the upright. Various constraints such as frequency, stress, displacement, and fatigue are taken into consideration during this optimization process. A parametric finite element model of the upright was designed, along with the mathematical formulation of the optimization problem as a nonlinear programming problem, based on the design objectives and suspension geometry. By conducting parameter sensitivity analysis, three design variables were chosen from a pool of five, and response surfaces were constructed to represent the constraints and objective function to be used to solve the optimization problem using Sequential Quadratic Programming (SQP). To streamline the process of parameter sensitivity analysis and response surface development, a Python scripting procedure was employed to automate the finite element job analysis and results extraction. The optimized upright design resulted in overall weight reduction of 25.3% from the maximum weight design of the parameterized upright. / Master of Science / The success of any racing car depends on three key factors: its speed, handling and reliability. In a highly competitive environment where lap times are extremely tight, even slight variations in components can significantly affect performance and consequently, lap times. At the heart of a race car's performance lies the upright—a critical component of its suspension system. The upright serves to link the suspension arms to the wheels, effectively transmitting steering and braking forces to the suspension setup. To achieve the best performance, upright must be as light as possible but it needs to be strong enough to ensure that the car is predictable when turning in a corner or while braking. Additionally, there is a need to explore methods of structural optimization and integrate finite element analysis seamlessly into the optimization process. Finite element analysis (FEA) is the use of part models, simulations, and calculations to predict and understand how an object might behave under certain physical conditions. This thesis examines a technique for optimizing the upright by designing it with numerous adjustable features for testing and then utilizing response surfaces to minimize its weight. Throughout this process, factors such as vibration, stress, deformation, and fatigue are carefully considered. A detailed parametric finite element model of the upright was developed, alongside the formulation of the optimization problem as a nonlinear programming problem, based on the objectives of the design and the geometry of the suspension. Through rigorous testing of parameters for optimization potential, design variables are selected for optimization. Response surfaces were then constructed to represent the constraints and objective function necessary to solve the optimization problem using Sequential Quadratic Programming (SQP). To enhance the efficiency of this process, a Python script was created to handle specific tasks within the finite element solver. This automation streamlined the analysis of the finite element model and the extraction of results. Ultimately, the optimized design of the upright yielded a 25.3% reduction in weight compared to its maximum weight configuration.
115

Structural Design of a 6-DoF Hip Exoskeleton using Linear Series Elastic Actuators

Li, Xiao 28 August 2017 (has links)
A novel hip exoskeleton with six degrees of freedom (DoF) was developed, and multiple prototypes of this product were created in this thesis. The device was an upper level of the 12-DoF lower-body exoskeleton project, which was known as the Orthotic Lower-body Locomotion Exoskeleton (OLL-E). The hip exoskeleton had three motions per leg, which were roll, yaw, and pitch. Currently, the sufferers of hemiplegia and paraplegia can be addressed by using a wheelchair or operating an exoskeleton with aids for balancing. The motivation of the exoskeleton project was to allow paraplegic patients to walk without using aids such as a walker or crutches. In mechanical design, the hip exoskeleton was developed to mimic the behavior of a healthy person closely. The hip exoskeleton will be fully powered by a custom linear actuator for each joint. To date, there are no exoskeleton products that are designed to have all of the hip joints powered. Thus, packaging of actuators was also involved in the mechanical design of the hip exoskeleton. As a result, the output torque and speed for the roll joint and yaw joint were calculated. Each hip joint was structurally designed with properly selected bearings, encoder, and hard stops. Their range of motions met desired requirements. In addition, a backpack assembly was designed for mounting the hardware, such as cooling pumps, radiators, and batteries. In the verification part, finite element analysis (FEA) was conducted to show the robustness of the structural design. For fit testing, three wearable prototypes were produced to verify design choices. As a result, the weight of the current hip exoskeleton was measured as 32.1 kg. / Master of Science
116

Structural Design and Analysis of a Kinematic Mechanism for a Morphing Hyper-Elliptic Cambered Span (HECS) Wing

Wiggins, Leonard D. III 13 January 2004 (has links)
The HECS wing was developed by NASA Langley Research Center and has a nonplanar, hyper-elliptically swept leading and trailing edge as well as spanwise camber. For this wing, the leading and trailing edges are swept back according to a hyper-elliptical equation. The span of the wing is also defined with hyper-elliptical anhedral giving it nonplanar spanwise camber. A single-degree-of-freedom mechanism is developed to provide a means for the wing to continuously change shape from its nonplanar to planar configuration. The mechanism uses a repeating quaternary-binary link configuration to translate motion from one segment to the next. A synthesis of the mechanism is performed, such that with one input to the first segment of the chain, the other wing segments move into their desired positions. Linear aerodynamic theory is applied to the HECS wing configuration at certain morphed positions in order to predict the aerodynamic loads. This work performs a linear static analysis of the mechanism at different morphed positions. A finite element representation of the mechanism as a structure is developed. Using the predicted aerodynamic loads, a structural analysis is performed. The analysis investigates different materials and cross sections of the members to determine a need for redesign due to failure from buckling and bending stress. From the analysis of the mechanism, a design is finalized which lightens the structure as well as increases the strength. These results are beneficial for the next phase of model development of the mechanism. / Master of Science
117

Optimization of Geometric Parameters for a Deployable Space Structure

Tulloss Jr., Robert Stuart 30 August 2021 (has links)
Deployable structures are used for many different spacecraft applications like solar arrays, antennas, and booms. They allow spacecraft with large structural components to comply with the volume restrictions of launch platforms. This research optimizes the shape and size of these structural components with both the stowed and deployed configurations in mind. HEEDS, a commercial optimization software, and ABAQUS, a commercial finite element analysis software, are used to evaluate and alter the structure using a single simulation. This makes the design process more efficient than running many different simulations individually. The optimization objectives, design variables, and constraints are chosen to fit the mission requirements of the structure. The structure analyzed in this research is a composite tube with a compressible cross-section wrapped around a cylinder. The change in cross-section reduces the bending stiffness of the tube and allows it to be wrapped without damaging the material. The dimensions controlling cross-section shape and the thickness of the composite layers are the design variables for the optimization. The maximum strain energy stored in the wrapped tube, the minimum volume of the structure, and the minimum weight of the tube are the objectives for the optimization. The strain energy is maximized to get the stiffest possible structure and satisfy the minimum natural frequency constraint. The weight and volume of the tube are minimized because reducing weight and volume is important for any spacecraft structure. Constraints are placed on the design variables and objectives and the Hashin damage criteria are used to ensure wrapping does not cause material failure. Three optimization runs from different initial designs are completed using SHERPA and genetic algorithm optimization methods. The results are compared to determine which optimization method performs best and how the different starting points affect the final results. After the optimized design is found, the full wrapping and deployment simulation is completed to analyze the behavior of the optimized design. / Master of Science / Spacecraft are launched into space using launch vehicles. There is limited room inside the launch vehicle for the spacecraft, but the spacecraft often needs large components like solar panels, antennas, and booms to complete the mission. These components must be designed in a way that allows them to be stowed in a smaller space. This can be accomplished by designing a system that can change the configuration of the component once the spacecraft is in orbit. This is referred to as a deployable structure, and the objective of this research is to create an optimization method for designing this type of structure. This is challenging because both the stowed and deployed configurations must be considered during the optimization. HEEDS, a commercial optimization software, and ABAQUS, a commercial structural analysis software, are used to evaluate and optimize the structure in a single simulation. The optimization objectives, design variables, and constraints are chosen to fit the mission requirements of the structure. The structure examined in this research is a composite tube with a compressible cross-section wrapped around a cylinder. As the tube is wrapped, it flattens, reducing the bending stiffness so the tube can be wrapped without damaging the material. The variables controlling cross-section shape and the thickness of the composite material layers will be altered during the optimization. The maximum strain energy stored in the wrapped tube, the volume of the tube, and the minimum weight of the tube are the objectives for the optimization. The strain energy is maximized to get the stiffest possible tube when it is unwrapped to ensure there is enough stored energy to facilitate the full deployment and to satisfy the minimum natural frequency constraint. The weight and volume of the tube are minimized because reducing weight and volume is important for any spacecraft structure. Constraints are placed on the design variables and objectives and the Hashin damage criteria are used to ensure wrapping does not cause material failure. The Hashin damage criteria use the strength of the material and the stresses on the material to determine if it is likely to fail. Three optimization runs with different starting points are completed for both the SHERPA and genetic algorithm optimization methods. The results are compared to determine which optimization method performs best and how the different starting points affect the final results. After the optimized design is found, the full wrapping and deployment simulation is completed to analyze the behavior of the optimized design.
118

Universell dragprovmaskin : För dragprov av tillverkade produkter

Karlsson Lillienberg, Emil, Holgerson, Rasmus January 2024 (has links)
In this bachelor thesis we will present our development and design of a universal tensile testing machine made for FA-TEC i Falkenberg AB capable of creating a pulling force of 1 MN which is approximately equal to a load of 100 tonnes. The purpose of the machine is to allow for the company to further their inhouse capabilities of tensile testing of their diverse steel products, allowing them to streamline and reduce delivery time and cost. The goal is for FA-TEC to be able to assemble the construction themselves in their metal workshop and put the machine into use this fall 2024. The project focuses on the design process and how and why we make different choices in reference to different perspectives such as safety in the form of solidity of the design and work environment. We also have a requirement specification as well as other limiting factors like available equipment for construction, subcontractors production catalog, work space and a deadline. The methodology we used is inspired by the method from the book “Product Design and Development” by Karl T. Urlich, Steven D. Eppinger, and Maria C. Yang. Chosen methodology is crossed by product development and semantic discontinuity detection by using FEA to conduct calculations of the construction giving us valuable feedback we can use to optimize and change the design, this is then done in multiple iterations until we arrived at our final design.
119

High-Frequency Irreversible Electroporation (H-FIRE) optimization for the treatment of highly invasive cells beyond the tumor margin

Latouche, Eduardo L. 19 June 2016 (has links)
Irreversible electroporation (IRE) is a non-thermal ablation technique that allows for eradication of unresectable tumors in a minimally invasive procedure. While IRE will preferentially kill larger cells over smaller ones, it does not discriminate between cells with larger and small nuclei. Given that one of the hallmarks of cancer cell morphology is larger, more abundant nuclei, our team set out to explore the possibility of preferentially targeting this physical and geometrical characteristic. / Master of Science
120

Das FEA-Assistenzsystem – Analyseteil FEdelM

Spruegel, Tobias C., Wartzack, Sandro 10 December 2016 (has links) (PDF)
Die simulative Absicherung von Produkten in den frühen Phasen der Produktentwicklung wird immer wichtiger, um den Anforderungen nach steigender Effizienz gerecht zu werden. Da das Angebot an erfahrenen Berechnungsingenieuren mit langjähriger Berufserfahrung begrenzt ist gilt es weniger erfahrene Simulationsanwender bei der Durchführung von aussagekräftigen Finite-Elemente-Simulationen zu unterstützen. Die Autoren stellen im Rahmen des Beitrags das Konzept des Analyseteils FEdelM eines FEA-Assistenzsystems vor, welches strukturmechanische Finite-Elemente (FE) Simulationen auf Plausibilität überprüft und auftretende Fehler möglichst automatisiert zu erkennt und behebt. Hierbei werden die einzelnen Module und deren Verknüpfungen untereinander und zu anderen Anwendungen vorgestellt.

Page generated in 0.0307 seconds